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Abstract

Exploration of state and behavior is essential for understand-
ing and debugging object-oriented programs. Many time-
related questions about object communication – an object’s
history – only arise in the context of a speci�c error in the
here and now. At such a speci�c point in time, however, it
is often distracting to involve omniscient debugging tools
such as program tracers, because they do not integrate well
with the programmer’s current focus on space-related ques-
tions and the informational cues at hand. In this paper, we
present a novel way to provide a tangible, consolidated no-
tion of both space and time in object exploration tools to
make it more likely that programmers will use the available
means to explore the evolution of particular objects. With
programmers remaining informed about and in control of a
program’s space and time, we promote the scienti�c method
for debugging and leverage exploratory programming prac-
tices. We evaluate our model with hands-on experiences
in the Squeak/Smalltalk programming system, using a pro-
gram tracer that we have integrated into existing exploration
tools to promote both spatial and temporal views. We believe
that a clear, tangible notion of spacetime can help tool de-
signers provide a better programming experience for those
constantly recurring “What happened to this object?” situa-
tions.

CCS Concepts: • Software and its engineering→ Soft-

ware testing and debugging; Integrated and visual devel-
opment environments.

Keywords: object-oriented debugging, omniscient debug-
ging, object inspection, query-based debugging, program
tracing, program exploration, exploratory programming, pro-
gram tracing, moldable development, Smalltalk
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1 Introduction

Programs run forward, producing a series of meaningful
results. Account bookings get processed, weather simula-
tions tick, pixels in a graphics scene are computed. In object-
oriented designs, such domain concepts are realized through
objects exchanging messages. Every so often, errors disrupt
the �ow of program execution, bringing everything to a halt
and leaving programmers to explore, understand, and �x the
situation. Tools for state inspection and behavior debugging
help unveil erroneous paths; repeated or stepwise execution
seems to “bend time” in the programmer’s favor. Eventu-
ally, program execution can go on normally and as designed.
Thus, at best, programmers wish to remain informed about
and in control of a program’s space and time.
The �eld of omniscient debugging investigates means to

e�ciently explore program execution without having to
plan ahead (of time). Program tracers can take care of log-
ging everything to enable “time-travel”, which means going
back and forth to get an understanding of why something
(un)expected has happened. In object-oriented programs,
this manifests as programmers being able to explore the
history of any object’s state and communication patterns
in call trees. In contrast to (manually) repeated execution
and thoughtful placement of breakpoints or logging state-
ments, programmers can focus on the information at hand
and navigate e�ciently as questions arise.

However, existing approaches for time-travel tools dictate
a shift in perspectivewithout su�ciently integratingwith the
traditional, well-known tools for object exploration and (for-
ward) debugging. They often expect an explicit commitment,
which unnecessarily restricts the kind of questions that may
arise. That is, one has to leave the current tool to consciously
start the time-travel debugger or the tracer, to then ask ques-
tions in the realm of time or traces, like programmers having
to decide between “release build” and “debug build” – as if
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they could always know this in advance. It is challenging
for programmers to manually combine answers to space-

related and time-related questions to eventually understand
the evolution of particular objects in the program.
Being experienced in malleable programming systems

such as Squeak/Smalltalk, we studied the bene�ts of “debug
mode is the only mode”1 and thus the need for not having
to plan ahead in terms of tool usage. When errors occur
unexpectedly, the current object state leaves programmers
puzzled, or stepwise (forward) execution onlymakes it worse,
only then might time-related questions arise and beg for in-
place tool support without losing the current focus.
This observation leads to the research question of this

paper:

How can we design tools for program explo-
ration that support both space-related and time-
related questions and thus combine historical
information about program execution (and ob-
ject evolution) in a single work�ow?

Thus, we want to further leverage the notion of exploratory
programming [29, 33], where program design unfolds through
onward experimentation and trial-and-error and cognitive
e�ort is reduced by not having to plan ahead too far in
the current task. Additional information can be queried as
needed while staying focused on the data that is already
visible and helpful.

In this paper, we make the following contributions:

1. We describe a practical approach for establishing a
universal tracing mode (that records historic states) in
exploratory programming systems while maintaining
suitable performance for an immediate programming
experience.

2. We present spacetime exploration, a novel interaction
model for object inspection and debugging tools that
enables programmers to explore objects along the two
dimensions of space and time on par.

3. We discuss the feasibility of the model by applying it
to our prototypical implementation of the TraceDe-
bugger

2 and sketching how other existing toolsets
can be subsumed within our model.

We believe that tool designers can use our insights to
integrate time-travel mechanisms into their environment
to be used more often by programmers who struggle with
time-related questions but hesitate to start over their cur-
rent debugging session just to �re up that program tracer
successfully.

1Gilad Bracha. 2012-11-17. Debug Mode is the Only Mode. h�ps://gbracha.

blogspot.com/2012/11/debug-mode-is-only-mode.html Accessed: 2023-04-
28.
2h�ps://github.com/hpi-swa-lab/squeak-tracedebugger

In section 2, we provide background information on how
we think about programming, tools for exploration and de-
bugging, and the integration of tools in a programming en-
vironment. In section 3, we describe how programming sys-
tems can trace exploratory activities continuously with a
reasonable performance. In section 4, we present our model
for time-aware object inspection tools which promotes tra-
ditional exploration practices and ad-hoc support for time-
related program comprehension questions. In section 5, we
apply our tool model in Squeak/Smalltalk, including two
examples of how the spacetime explorer could manifest for
domain-speci�c tools, including an evaluation of the system
performance in section 6. We discuss the results in section 7
and conclude our thoughts in section 8.

2 Background and Motivation

In this section, we explain our notion of exploratory pro-
gramming and how debugging is limited in existing systems
that support techniques for exploration and experimenta-
tion. In particular, we will argue using a vocabulary around
object-oriented programming and Smalltalk programming
systems.

2.1 Exploratory Programming

Exploratory programming is a programming technique for
working on a software system where the system or the re-
quirements are not fully understood [3, 29, 33]. It allows
programmers to iteratively re�ne their knowledge of the
system and the problem space and to prototype and evaluate
possible solutions.

During exploratory programming, programmers conduct
many experiments by having a conversation with the sys-
tem in which they ask questions and interact with parts of
the system to form, con�rm, and reject hypotheses [28, 37].
These questions can relate to the space and to the time of the
system:

Space-related questions refer to the state of the sys-
tem, i.e., the meaning of the data stored in the system,
its structure, and its interconnections.

Time-related questions refer to the running behavior
of the system, i.e., the way the system creates, uses,
modi�es, or arranges data.

Typical exploratory systems allow programmers to ask ques-
tions by selecting items from a list or by evaluating short
code expressions as programs in the context of the system.
Exploratory programming thrives through low-cost ex-

periments where programmers are encouraged to ask a large
number of questions [33]. Thus, by avoiding interruptions
to programmers that are caused by temporal delays or levels
of indirection [29], supportive programming systems should
provide an experience of immediacy [41]:
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Temporal immediacy: “Human beings recognize cau-
sality without conscious e�ort only when the time
between causally related events is kept to a minimum.”

Spatial immediacy: “[...] means the physical distance
between causally related events is kept to a minimum.”

Semantic immediacy: “[...] means the conceptual dis-
tance between semantically related pieces of informa-
tion is kept to a minimum.”

The interactive programming system Smalltalk-80 is found-
ed on exploratory programming practices [9, 33]. Being
purely object-oriented, all actions are modeled through mes-
sages exchanged between objects. Every object is an instance
of a class and is characterized by its identity which distin-
guishes it from all other objects in the system, its state which
is represented by its primitive slots or variables, and its be-
havior which is described by methods that implement the
reception of messages. For example, programmers can model
a database as a set of data structure objects whose state in-
cludes their data, metadata, and caches, and whose behavior
includes their ability to construct themselves or to manipu-
late and access data.
Squeak/Smalltalk is a modern implementation of such a

completely open and explorable programming system: pro-
grammers do not think of isolated applications but of in-
teracting systems, being able to access and manipulate all
objects and processes in it. For that, the system provides them
with tools to explore objects by asking them questions about
their state and behavior. Squeak is implemented in itself [13]
and allows programmers to explore and manipulate the en-
tire fundament on the �y, including its compiler, interpreter,
and tools for browsing and debugging [12, 32, 38].
Next to Smalltalk programming systems, two other com-

mon examples of interfaces with a solid experience of imme-
diacy are REPL interpreters and computational notebooks
[42], both of which also support strategies for exploratory
programming.

2.2 Tools for Program Exploration

Programmers often need to explore the system at hand for
various types of tasks such as such as prototyping a feature,
discovering an extension point, or �xing a bug. For example,
a standard library programmer might want to optimize write
access for the RunArray class, which is a dynamic sparse
collection in Squeak, and thus explore how actual RunArray
objects implement the addition of new elements. For such an
exploration task, exploratory programming systems provide
two types of tools: object inspectors and (process) debuggers.

Object inspection. Programmers can explore the space of
a system by inspecting objects by their state. For this, they
can use general-purpose tools that are provided by the pro-
gramming system or domain-speci�c tools from the system
under exploration. For example, a popular general-purpose

inspection tool is a property sheet, which displays the in-
dividual slots and variables of an object in a key-value ta-
ble [18; 38, chap. 6, sec. 3]. Domain-speci�c tools can provide
higher-level representations of an object such as a directed
graph for a complex data structure, a visualization of statis-
tical data, or a preview of graphical resources [4].

Object inspection tools are typically interactive, allowing
programmers to ask more speci�c questions by selecting
portions of the object state to request more details about it
and thus navigate through the object graph. For example, our
standard library programmer can inspect a sample RunArray
object through a general property sheet and select its runs
variable to examine its assigned integer array more closely
and learn about its semantics, or she can evaluate a custom
query to access or count elements in the RunArray.

(Process) debugging. Programmers can explore the time

of a system through the behavior of objects. They can learn
about the behavior by browsing the object’s implementa-
tion, but due to the abstract nature of static source code,
this activity often involves additional complexity and a lim-
ited experience of immediacy. Instead, many exploratory
programming systems promote dynamic program execution
where programmers can explore behavior in the context of
a concrete program instance.
A common dynamic program exploration tool is the de-

bugger, which allows programmers to interactively execute
a program step-by-step while having access to the context
stack of currently active methods, their source code, and
the state of the relevant objects [18; 38, chap. 6, sec. 4].
Omniscient debuggers (also back-in-time debuggers or time-

travel debuggers) enhance the immediacy of debugging by
enabling programmers to freely navigate through a context
tree (also referred to as call tree) that contains all method
activations over time [11, 17, 27]. For that, they either record
a program trace with the context tree and, optionally, snap-
shots of the historic states in advance [20], or they re-run
a reproducible program to interactively display the infor-
mation requested by the programmer [23]. In addition to
the order of execution, omniscient debuggers can provide
further means of navigation, including queries about the
data�ow of information (i.e., dynamic slicing) [14, 19, 40],
the global object graph [10, 15, 26], changes to the state
of objects over time [7, 8, 34], and events in the program
execution [5, 6, 16, 25, 31].

In our example of a standard library, our library developer
can debug the enumeration of the RunArray object to inves-
tigate how its elements are accessed in order. Alternatively,
she can back-in-time debug the construction of a new in-
stance to retrace the initialization of its internal variables.
Both strategies can help gain a better understanding of the
situation.
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Figure 1. Programming tools help explore a system’s space
(or state) over its time (or behavior). Traditional tools (here:
inspector and debugger) provide limited means for navigat-
ing the dimensions of space and time. Our spacetime ex-

plorer o�ers more �exibility for richer support of program-
comprehension questions.

2.3 Toward Immediacy Across Space and Time

Object inspection and process debugging are often interwo-
ven as most programmers’ exploratory journeys take them
through both space and time (�g. 1). Yet, typical exploratory
programming systems provide separate means for each ac-
tivity, and programmers frequently alternate between them.
For example, our library programmer starts by inspecting a
sample RunArray object to �nd an interesting variable in its
property sheet. She then closes the inspector and switches to
a debugger to explore the emergence of the variable’s value
during the array’s initialization. As she steps through the ex-
ecution, she inadvertently overshoots and has to backtrack a
couple of times. Finally, she �nds a valid explanation for the
value, which means closing the debugger and switching back
to the original inspector. Another hunch leads her to search
for another variable, which entails inspecting the properties
of that variable’s value in another inspector. The exploratory
journey continues.
We envision a new kind of programming tools that sub-

sume the navigational axes of space and time in a generally
explorable way. Such tools should ensure the omnipresence
of time- and space-related information. Programmers should
not be forced to plan ahead but rely on being able to (1) ex-
plore the system state at all abstraction levels and (2) freely
go back and forth to learn about the evolution of that state
over time. In particular, we want to tackle the following
challenges:

Temporal immediacy: Due to the nature of program
execution, moving forward in time is possible by ad-
vancing the program, but if programmers want to
move backward, a trace of the prior execution is re-
quired. Since program tracing involves a signi�cant

performance overhead, programming systems usually
do not allow for going back by default.

Spatial immediacy: Poorly integrated tools for explo-
ration exhibit spatial clutter and rely on programmers
to manually (or mentally) connect useful pieces of
information. Redundant switches between multiple
views and perspectives increase the cognitive load and
thus the chance of making mistakes.

Semantic immediacy: A cluttered toolset reduces the
e�ective amount of useful information because be-
ing side-by-side does not imply being related. Many
inspection tools do not provide programmers with re-
lated information about the emergence over time of
the state being viewed; many debuggers o�er only a
limited perspective on the state of objects from the
current context frame.

We believe that by establishing a universal tracing mode

and a �exible spacetime exploration model, tools for explo-
ratory programming can further improve the overall pro-
gramming experience while designing and implementing
high-quality software.

3 Establishing a Universal Tracing Mode

Exploratory programming systems usually do not make his-
toric information about program execution available on the
�y. The typical resource requirements of program tracers
con�ict with the need for short feedback cycles and an experi-
ence of temporal immediacy. Thus, the prospect of increased
execution time and memory usage demands a trade-o� to at
least get the feeling of having in-situ omniscient debugging.
In this section, we describe our ideas for establishing a

universal, omnipresent, “feels like always-on” tracing mode
in exploratory programming systems without sacri�cing too
much temporal immediacy.

3.1 E�cient Trace Model

A naive approach to representing the historic data of a pro-
gram trace is to store a full snapshot of all objects at each
point in time. Yet, this is a highly redundant approach and in-
troduces a signi�cant memory/storage overhead since many
program instructions will not change any or only a few vari-
ables of the overall system state. Speci�cally in exploratory
programming systems,many programs evaluate programmer-
initiated questions (or queries) that only regard one or a few
sub-systems; these (mini-)programs will most likely not ma-
nipulate a larger fraction of objects in the system.

In our program tracer [39], an incremental historic memory

e�ciently stores �ne-grained changes in a sparse collection
for each object and each of its slots (i.e., variables) using a
hash table (�g. 2). When active, the tracer detects side e�ects
to object slots and stores previous values in the historic mem-
ory before they are displaced. We avoid duplicating current
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a Morph(2826611) 0@0 corner: 50@40

submorphs bounds color

< 13 < 80 < 131

nil #() {a Morph(1795436)}

< 44 < 136

nil 0@0 corner: 50@40

< 52

nil

origin corner

< 37

nil

< 39

nil

Figure 2. Example of our incremental historic memory struc-
ture for tracing the construction of a widget (Morph) in
Squeak. The dark boxes represent associative arrays of point-
ers. For each object slot involved, all former displaced states
are preserved in a sparse array. For example, the morph’s
submorphs variable was assigned the empty collection #()

during the time interval [13, 80).

values in the history since these remain available in the run-
ning system. Once the traced program has terminated, the
current system state is not discarded until the “host system”
(or the entire Squeak/Smalltalk environment in our case)
terminates. Consequently, the size of the memory e�ciently
grows with the number of performed side e�ects, making it
more or less independent of the program’s execution time
or the system’s size. For the same reasons, the time to write
to the historic memory is reduced as well.

3.2 Explicit Exploratory Interface

A strength of exploratory programming systems is that pro-
grammers can explore, modify, and interact with any part of
the running system at any time. Yet, this poses a challenge to
program tracers which are intended to record programmer-
initiated behavior only. For example, a typical user interface
widget in Squeak continuously receives drawing messages
from the Morphic rendering engine, but programmers can
also directly interact with the widget to change its appear-
ance or trigger actions. In this situation, the programming
system is unable to distinguish between the “background
noise” of the rendering system and the behavior that happens
in response to the programmer’s interactions.

To allow for this distinction, we de�ne explicit exploratory
interfaces in the system and enable the program tracer when-
ever the execution crosses the boundaries of these interfaces.
For example, we de�ne the Squeak compiler’s protocol for
evaluating custom expressions as an exploratory interface.
Analogously, we can de�ne the means of interaction through
inspection tools or the Morphic halos for direct manipula-
tion [38, chap. 12] as exploratory interfaces. Thus, program-
mers can execute the system and interact with its part as

usual, and the systemwill trace small portions of the running
behavior only, keeping the performance overhead low and
preserving the experience of temporal immediacy.

As an extension to breakpoint debugging and in the case
of unhandled exceptions, explicit exploratory interfaces can
help create a sense of in-situ omniscient debugging. Given a
traditional debugger that displays a suspended process and
thus a speci�c point in execution time, selected method acti-
vations (or stack frames) might be eligible entry points for
program reproduction if the a�ected state can be rewound.
For performance reasons, promising candidates can typi-
cally be found at the time of object creation, when the entire
context is su�ciently de�ned. Note that techniques around
exploratory programming can cope with “good enough” sit-
uations as long as programmers can reason about the infor-
mation at hand and thus notice irregularities to avoid false
conclusions. Consequently, ad-hoc back-in-time navigation
might not work for all unplanned debugging situations but
it might be worth a try.

3.3 Program Reproduction

As an alternative to tracing program execution in advance,
programmers can also re-run programs multiple times to
collect relevant information [24] as needed. To reproduce
the execution, still, they need to provide the original entry
point again. This can be challenging as the state of an object
might have changed through a series of interactions through
di�erent tools and interfaces.
We suggest that exploratory systems can log these inter-

actions through explicit exploratory interfaces (as described
above) to automatically reproduce them later for tracing.
In particular, several exploratory systems already maintain
such interaction logs that could be exploited: for example,
Squeak records all evaluated expressions in a changes �le [38,
chap. 7, sec. 4] and many REPL interpreters maintain a his-
tory of previously executed commands.

However, reproducing program execution in combination
with re-tracing parts of the call tree requires deterministic

state changes. Without explicit guards or isolation, a pro-
gram’s side e�ects might even a�ect other activities in the
system. We therefore suggest that a universal tracing mode
should prioritize upfront tracing and employ program repro-
duction only sparingly. In ambiguous situations, the result-
ing trace should be �agged so that programmers can make
their own educated guesses and decide how to proceed. Note
that programmers even anticipate such situations on their
exploratory journey.

4 The Spacetime Exploration Model

To enable programmers to handle and exploit the temporal di-
mension of program state, we propose spacetime exploration,
a new interaction model for exploratory programming tools
that combines object inspection and debugging into a single
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Figure 3. Our tool model for spacetime exploration. A pro-
grammer explores an object’s spatial and temporal dimen-
sions (blue). The spacetime inspector combines views on
both dimensions in a single work�ow (orange). Traditional
views include property sheets or trees; advanced visualiza-
tions can enrich the experience. Programmers retain control
over the informational granularity of both dimensions.

work�ow. In our model, programmers explore objects by
two dimensions on par: space, through the object’s state, and
time, through the object’s behavior. Both dimensions are tan-
gible3 entities that programmers can directly interact with
to navigate through the spacetime of the explored object.
The proposed interaction model consists of four central

entities (�g. 3):

Object: The model focuses on a selected object from the
system under exploration. It is part of an executed or
executable program instance.

Spatial view: The spatial view provides access to the
state of an object. The object state can be represented
either through a general-purpose tool such as a prop-
erty sheet or a hierarchical list for nested objects or
through a domain-speci�c visualization. Usually, pro-
grammers can interact with the spatial view to re�ne
it for speci�c questions.

Temporal view: The temporal view provides access to
the history of an object. Time can be represented by a
�at timeline or be structured according to the system’s
behavior. Like the spatial view, the temporal view can
be a general-purpose artifact such as a context tree
or be tailored to the semantics of the speci�c object’s
domain. By interacting with the temporal view, pro-
grammers can navigate through the object’s history.

3In Smalltalk systems, tangibility refers to the ability to send messages to
the object at hand to explore it or trigger side e�ects.

Programmer: The programmer explores the object in
the context of the program through the spatial and the
temporal view. To navigate through the spacetime of
the object, she can interact with both views to con-
trol the amount of detail in the spatial and temporal
dimensions.

Both views in�uence each other dynamically: the space is
displayed for the current selection of the time, whereas the
time is displayed for the history of the selected space. So, by
choosing a relevant state portion (i.e., a set of variables) in
the spatial view, the programmer can adjust the granularity
of the temporal view. Analogously, by selecting a time slice

(i.e., an interval between two points in time) in the temporal
view, she can adjust the density of information displayed in
the spatial view.

For example, the programmer could explore an object from
a traced program in a spacetime-aware inspector. Within the
inspector, she could choose between di�erent spatial views
that provide di�erent levels of informational density, such as
a single variable view vs. a full property sheet. Based on the
spatial view she chooses, the temporal view will display the
time with a di�erent granularity: for the single variable view,
the relevant variable might have been reassigned only two
times, so the temporal view would display only two method
activations for these side e�ects. On the other hand, the
property sheet displays multiple variables that correspond
to a larger set of side e�ects, and the temporal view will
display a larger number of method activations. Conversely,
the spatial view displays a list of all historic values for each
variable, corresponding to a high information density. Yet, if
the programmer selects a subset of the method activations
in the temporal view, the spatial view will display only those
variable values that have been changed from one of the
selected method activations.
Thus, the proposed interaction model builds on the con-

cept of object traces which describe the history of all changes
to a state portion of an object [39]. Yet, an object trace distin-
guishes between a query for selecting the state and a list for
outputting the results, whereas the spacetime exploration
model merges both of them into a single interactive view.
Note that spacetime exploration is di�erent from traditional
query-based debugging, which requires programmers to pro-
vide explicit queries to retrieve values from both dimensions
independently [8, 10, 25]. For spacetime exploration, they
only express a simple query to request a state portion, and
this query implicitly performs a drill-down on the time, or
conversely, they only ask for a subset of the time to create
an implicit �lter on the space.

5 Applying Spacetime Exploration in
Squeak/Smalltalk

We demonstrate the practicality of our proposed interaction
model by describing a prototypical spacetime inspector in
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Squeak/Smalltalk.We draw inspiration from similar concepts
in other domains such as revision control systems [2, 30] (e.g.,
git4), versioning �le systems [21], or the Internet Archive’s
Wayback Machine5. For instance, git’s log and blame features
enable programmers to explore the space (�les and lines) and
the time (change history) of a system (the repository) similar
to our spacetime exploration model, and programmers can
control the density/granularity of either dimension to reduce
the complexity of the resulting artifacts.

5.1 Implementing the Spacetime Inspector for the

TraceDebugger

The TraceDebugger is an omniscient debugging tool for
Squeak/Smalltalk that allows programmers to incrementally
execute a program and maintains a program trace for later
exploration. For the program trace, the TraceDebugger

records the behavior in a context tree and all states in an
incremental historic memory. For accessing historic states,
it provides a range retracing mechanism that evaluates a
user-provided range query against the incremental historic
memory and returns an object trace of all di�erent results of
the query over time [39]. Thus, the granularity of the object
trace, i.e., the number of individual results, depends on the
complexity of the state requested by the query as well as
on the number of side e�ects that have been made to that
state during the traced program execution. To implement
tracing and retracing, the TraceDebugger instruments the
Squeak bytecode interpreter for tracking single instructions
and emulating historic states.
We design the spacetime inspector as a general-purpose

tool that programmers can extend with domain-speci�c spa-
tial views. Programmers can open an object in the spacetime
inspector and dynamically switch between all supported
spatial views. Thus, the spacetime inspector is a moldable
tool [4, 5]. Prede�ned spatial views include a simple tex-
tual representation of the object and a hierarchical property
sheet for exploring the state and composition of the object
that resembles Squeak’s built-in object explorer [38, chap. 6,
sec. 3]. Because programmers can select not only a single
point in time but also a time slice in the temporal view, each
spatial view can aggregate multiple versions of the object
and display them side by side. In our prototype, the temporal
view represents the behavior of the system through a slice
of the original context tree, which is displayed in an interac-
tive tree view where programmers can select any subtree to
navigate through time. Additionally, a slider is provided to
scrub through the individual points in the time slice, i.e., the
leaves in the corresponding context tree slice.
We implement the spacetime inspector in the context of

the TraceDebugger using object traces (�g. 4). For that,
each spatial view provides a range query to the framework

4h�ps://git-scm.com
5h�p://web.archive.org

Figure 4. Expected data�ow between custom spa-
tial/temporal views and the spacetime inspector. The spatial
view retrieves an object and the historic memory (1) and
provides a list of view data and time slices (2). The temporal
view retrieves the time slices (3) and provides a list of
selected time slices (4). Based on this selection, the spatial
view retrieves the corresponding view data (5). Both views
contribute to the spacetime inspector’s UI (6).

that retrieves a relevant state portion from the explored
object, and the framework returns an object trace containing
all query results within the user-selected time slice to the
view. When programmers interact with a spatial view, it can
update its query dynamically: for example, if a programmer
expands the subtree for one value from a property sheet,
the query is re�ned to collect all nested properties from the
relevant object as well. As a result, the granularity of the
resulting object trace might increase, causing the temporal
view to display additional method activations in the tree
view.

5.2 Use Case: Exploring Evolution of a RunArray

The RunArray is a run-length encoded data structure for
dynamic sparse collections in Squeak. Internally, it maintains
two arrays: runs, which contains the number of repetitions
for each element, and values, which contains the pairwise
di�erent elements of the collection. When a new element
is added to the collection, the RunArray �rst attempts to
extend the last existing run by increasing the last item of the
runs array, or otherwise, if the new element is di�erent from
the previous one, it updates both arrays by copying them
into new larger arrays and appending the new value and run
length to them.
We describe how our library programmer can use the

spacetime inspector to explore the evolution of her sample
RunArray object and get an understanding of its implemen-
tation. She creates the RunArray using the following code:

RunArray new

add: #plonk withOccurrences: 3;

add: #plonk withOccurrences: 2;

add: #gri�le withOccurrences: 4;

yourself
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(a) Exploring the RunArray through a domain-speci�c spatial view that displays the single elements over time. Invalid intermediate states
have been hidden through a �lter.

(b) Exploring the RunArray through a generic property sheet that displays its basic variables over time. This screenshot is the result of
clicking on the representation mode “explorer” at the top right corner of the window in �g. 5a and choosing “basic explorer” instead.

(c) Exploring the addition of an element to the RunArray through a generic property sheet with a reduced informational density. In the
property sheet, the user has selected and expanded the runs variable to highlight all changes to this variable in the temporal view (underlined
blame). Additionally, she can use the context menu of the variable to navigate to its adjacent changes.

Figure 5. Implementation of our spacetime exploration model for exploring the history of the RunArray object with di�erent
levels of detail. Note that we chose to place the temporal view on the left and the spatial view on the right. By dragging the
horizontal slider, users can move �uidly through the points in time from the temporal view. Inline summaries (here: “fray out”)
provide an overview for heterogeneous values.
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(a) Descending the NFA to match a single digit.

(b) Backtracking from an unmatched link after discarding a greedy match of the �rst capture group.

(c) A successful match with multiple repetitions of the �rst predicate and of the capture group.

Figure 6. Implementation of our spacetime exploration model for exploring Squeak’s regular expression engine matching a
sample string (1) against the pattern \d+(_\d+)*. Two spatial views (1, 2) are augmented by a �oating temporal view (3): the
boxes and arrows (2) represent nodes of the matcher’s NFA and links between them. Colors indicate active (yellow), discarded
(red), and successful (green) matches. The curved line (3) represents the recursion stack of the currently attempted match.

After she opens the tool, the spatial view initially displays
a RunArray-speci�c list of the elements in the data structure
while the temporal view shows a reduced version of the con-
text tree with all method activations that have modi�ed the
data structure (�g. 5a). Based on this display, the library pro-
grammer gets an overview of the evolution of the RunArray,
and she can switch between its di�erent historic versions by
moving the time slider.

Next, she wants to learn about the internal representation
of the elements in the RunArray. To do so, she changes the
type of the spatial view to retrieve a property sheet of its
variables instead (�g. 5b). For each variable, this property
sheet displays a list of all historic variables. At the same time,
the temporal view is re�ned and adds further method activa-
tions to the context tree that have a�ected single variables

of the RunArray (but that have not a�ected its public list of
elements). In the property sheet, she already discovers the
two variables of the object that are probably responsible for
describing the essence of the data, runs and values, but their
assigned value histories contain too many values to quickly
grasp their meaning. Thus, she reduces the load of the spatial
view by selecting the top-level method for the addition of
the last chunk of elements from the context tree (�g. 5c). In
response, the density of the spatial view is reduced and only
the variable changes that were caused during this addition
appear. Now, by using the time slider, she understands that
�rst, the new number of occurrences has been added to the
runs array, and after that, the new value has been added to
the values array.
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She also wonders how the runs array has changed, i.e.,
whether the array object has been mutated inline or whether
the variable has been assigned a copy of its previous value.
To answer this question, she uses the blame feature of the
spacetime inspector and selects the variable in the spatial
view (�g. 5c). In response, the temporal view highlights all
other method activations in the tree that have changed the
runs variable itself (i.e., that reassigned it) and o�ers her a
pair of buttons to navigate between these methods. Based on
this information, the library programmer realizes that the
runs variable has been reassigned many times, so she sus-
pects that for each write operation, the RunArray performs
an expensive copy operation, and she veri�es this hypothesis
by opening the addition method in a code browser. Finally,
she decides to optimize the data structure by implementing
an overallocation strategy in this method.

5.3 Use Case: Visualizing Regular Expression

Matching

Here, we illustrate the versatility of the spacetime explo-
ration model by using it to visualize the matching behavior
of a regular expression engine. The Regex package in Squeak
provides a Smalltalk-speci�c �avor of regular expressions. It
implements pattern matching through a non-deterministic
�nite automaton (NFA) and object-oriented recursion: given
an input string, the matcher recurses through the NFA while
at each link trying to match the next character against predi-
cates or contextual conditions and capturing matches. In our
visualization, we want to explain the high-level concepts of
the regular expression engine by exploring the matcher’s
behavior through real examples.
For this, we combine two spatial views and one domain-

speci�c view (�g. 6). All views are domain-speci�c and cor-
respond to our de�nition from section 4. The �rst spatial
view is a text widget that displays the input of the matcher
and highlights the range of the attempted match substring.
The second spatial view is a graph widget that displays the
structure of the matcher’s NFA (which is constant per pat-
tern) through a set of labeled nodes and directed edges6. The
temporal view visualizes the behavior of the matcher: on top
of the graph widget, we draw a spline curve that resembles
a literal thread and displays the current recursion stack by
winding through the links on the active recursion path.

Through the interface of the spacetime inspector, we can
retrieve the required data for the views regardless of the
speci�c memory data structure of the program tracer by
expressing queries against the state of the matcher object
such as self startPosition to: self position or:

ThisContext7 stack

select: [:ctxt | ctxt selector = #matchAgainst:]

thenCollect: [:ctxt | ctxt receiver]

6h�ps://github.com/LinqLover/Regex-Tools
7ThisContext refers to the active context frame during the execution.

The spacetime inspector allows programmers to interact
with the visualization. They can drag the time slider to ob-
serve the growth of di�erent recursion paths and understand
how the matcher backtracks. In addition, the spacetime in-
spector interface allows to easily de�ne further means for
interaction, such as navigating the time by selecting nodes
in the tree, adjusting the granularity of the visualization by
expanding or collapsing sets of nodes in the graph, or ex-
ploring the captured substrings through another spatial view
that supports the blame feature.

6 Evaluation of Performance

We evaluate the performance of our proposed approaches
for establishing a universal tracing mode and the spacetime
exploration model in terms of their time and space consump-
tion. Even though this is not a user study, we can assume
that a good system performance has a positive e�ect on user
performance and satisfaction [41].

6.1 Universal Tracing Mode: Responsive up to

Medium-sized Workloads

For our current prototype, we sacri�ced maximum perfor-
mance for a simple implementation and built the program
tracer through Squeak’s image-side bytecode interpreter
rather than using instrumentation or a virtual machine-side
approach. Thus, compared to regular execution in the virtual
machine, tracing introduces a runtime overhead of between
100 000 % and 1 000 000 %. Still, due to the explicit exploratory
interfaces that we de�ne in the programming system, we
only need to trace short interactions of the programmer with
the explored system, which introduces small delays of only a
few seconds for small- to medium-sized workloads (table 1).

Table 1. Time and memory consumption of the TraceDe-
bugger recording program traces for di�erent workloads.

Domain Program Time [s]a Memory [kB]

Data structures

RunArray new

add: #plonk withOccurrences: 3;

add: #plonk withOccurrences: 2;

add: #gri�le withOccurrences: 4;

yourself 0.0021 61.4

Regular expression matching

"matcher := '\d+(_\d+)*'asRegex."

matcher matchesIn: '1

17_3 42_7895_0_456

999999_0_0_' readStream 0.407 11 782

UI widget construction (13 elements)

WatchMorph basicNew initialize 0.797 15 299

UI rendering (89 elements, 650 px × 425 px)

aSystemBrowserWindow imageForm 8.905 2 567 832

a Test machine: Intel i7-8550U CPU @ 1.80GHz. Environment: Open
Smalltalk Cog/Spur VM of version 202206021410.
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Figure 7. Interaction delays for navigating the spacetime inspector. Values were recorded for di�erent workloads that were
described in sections 5.2 and 5.3.

Moreover, the tracing costs are amortized over the single in-
teraction steps performed by the programmer (e.g., through
separately evaluated commands), resulting in interactive re-
sponse times for most workloads [35, p. 473].

As a result of our space-e�cient memory model, most of
our considered program traces consume only a small number
of megabytes (table 1). The only exception is a CPU-based
rendering system running in unoptimized legacy mode8

whose trace consumes multiple gigabytes.

6.2 Spacetime Exploration: Temporal Granularity

Matters

We show that spacetime exploration tools can be built with
a practical performance by the example of the presented
spacetime inspector. We measure the delays caused by user
interactions for spatial navigation (i.e., changing the gran-
ularity of state) or temporal navigation (i.e., changing the
selected time slice).

Delays for spatial navigation correlate with the temporal
granularity of the spacetime inspector (number of contexts
displayed in the tree), ranging from 0 to 2 seconds for small-
sized workloads and rarely exceeding 8 seconds for larger
workloads (�g. 7a). Delays for temporal navigation correlate
with the spatial granularity (number of items displayed in
the spatial view) and do not exceed 0.7 seconds for any of
our observed workloads (�g. 7b). A bottleneck is inline sum-
maries (“fray-outs”, �g. 5) which introduce delays of more
than 1 second for medium-sized workloads up to several min-
utes for a high temporal granularity (�g. 7c). Note that inline
summaries are an optional feature: they are only generated
when selecting inner nodes in the context tree and users who
only use the time slider for navigation will never encounter

8Currently, the TraceDebugger supports only the lowest-level rendering
primitive of Squeak’s BitBlt plugin (primitiveCopyBits) and triggers the less
e�cient image-side fallback code for all other rendering primitives.

them. Thus, spatial navigation through an object’s history
satis�es Shneiderman’s criteria for common interactive tasks
for small- and most medium-sized workloads and temporal
navigation meets the criteria for frequent interactive tasks
for any small- to medium-sized workloads [35, p. 473].

Moreover, the spacetime inspector constitutes an applica-
tion of spacetime exploration that is domain-agnostic and
promotes object-centric, contextual information. For domain-
speci�c views, programmers can exploit domain knowledge
for optimizations, and spatial and temporal granularity tends
to be smaller. For example, our visualization of regular ex-
pression matching (section 5.3) only requires two spatial
items at a static temporal granularity, resulting in a query
that we can evaluate once in less than 4 seconds and cache
for all navigation steps.

7 Discussion and Related Work

In this section, we discuss the implications and limitations of
our work for programmers and tool developers and compare
it to related work.

7.1 Programming Experience

Our proposed interaction model streamlines program explo-
ration by combining two related yet typically disconnected
activities: object inspection and (omniscient) debugging. This
promotes tools for exploratory programming where tool
builders aim for focused, uninterrupted programming ses-
sions, supporting a wider range of exploration tasks from a
single place and thus contributing to the users’ experience
of immediacy.
Further, tools can use the dimensions of space and time

to provide exploratory programmers with richer contextual
information about a system, assisting them to discover poten-
tially relevant relationships between objects and events ear-
lier. Through the omnipresent spatial history of objects under
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exploration, programmers gain access to another source of
information that can help them develop an intuitive under-
standing of the semantics of the state of complex objects and
that is often easier to comprehend than the complex source
code that produced the state in question.

Finally, the spacetime exploration model equips program-
mers with a more consolidated metaphor for re�ecting on
their interaction with the system and expressing clearer ques-
tions that relate to both the state and the time of a system.
Programmers face a smaller gulf of execution [22] for com-
municating these questions to the system: they do not need
to explicitly describe both dimensions separately as in ex-
isting approaches to queryable debugging, and views can
encapsulate the actual query behind a higher-level (interac-
tive) representation.

7.2 Building Tools for Spacetime Exploration

Our presented applications of the concept show that the in-
teraction model can be practically implemented and used by
programmers. In particular, the explicit notion of views in
the spacetime inspector makes it possible to reuse and com-
pose existing tools for representing and exploring the space
or time of objects from arbitrary or speci�c domains. Still, we
acknowledge the intrinsic complexity of tool building and
the lack of support for moldable development in many envi-
ronments that might discourage programmers from building
domain-speci�c tools.
The design of the spacetime inspector does not require

these tools to be aware of the spacetime inspector. In prac-
tice, still, they can bene�t greatly from being tailored to
the spacetime context: �rst, this allows them to display the
relevant state of an object over an entire time slice by dis-
playing changed parts in an aggregated summary. Second,
tool builders can signi�cantly improve their responsiveness
by factoring out UI logic that is independent of object state
from the range query.

7.3 Applicability and Limitations

Due to its object-centric nature, the applicability of the space-
time exploration model is limited to systems that model rel-
evant state portions in a coherent region of the object graph
across time. For example, programmers might gain less in-
sight into a system that models state changes in a functional
style through immutable copies of objects rather than side
e�ects, has weak semantics of object identity (e.g., due to
proxies or serialization concerns), or entails object-crossing
data�owwhere values are moved and rearranged throughout
di�erent regions of the object graph. Since data�ow in par-
ticular is common in many systems, spacetime exploration
is not a suitable means in general for retracing the infection
chain of a bug [23]. Instead, we see the model’s greatest po-
tential in exploratory tasks that center on the evolution or
emergence of an object or a composition of objects, allowing

programmers to explore the operating principles of systems
through domain-speci�c views on their state and behavior.
The spacetime model necessarily depends on a resource

for exploring time that is typically expensive to obtain, store,
and query, since program tracing and object traces are often
connected to high CPU and memory consumption [20, 39],
and in many systems, programmers might not even have
access to a program trace. We can mitigate these concerns by
tracing only relevant subsets of the program execution or by
lazily reconstructing and rerunning programs; note that the
latter approachmight be unreliable for programs that depend
on global state or non-deterministic behavior. Due to the
dynamic structure of a spacetime inspector, its optimization
potential through caching and pre-�ltering is limited. These
performance limitations can limit the responsiveness of a
spacetime inspector depending on the complexity of the
system and the views and thus reduce the immediacy of
spacetime exploration; fortunately, we have found that our
prototype implementation is already su�ciently responsive
for many practical small- to medium-sized workloads.

7.4 Related Work

Similar to our proposed spacetime exploration model, [1]
describes another approach to combine the dimensions of
space and time of a program trace by displaying them in a
trace table. In contrast to our object-centric perspective, their
model centers on a stackframe or subtree of the call tree and
examines the data�ow of values rather than the evolution
of objects through side e�ects, and they do not describe
any strategies for higher-level, domain-speci�c means of
representing and interacting with the space-time data.

The Whyline approach [14] describes an interaction mo-
del for debugging tools that allows programmers to directly
answer “why” and “why not” questions about the space and
time of an executed program. Similarly, our spacetime explo-
ration model assists programmers in answering such ques-
tions. In comparison, we take a more open approach that
fosters contextual information and encourages programmers
not to express precise and close-ended questions but to se-
lect regions of the spacetime that they would like to explore
in detail. Thus, both models involve di�erent trade-o�s be-
tween the gulf of execution and the gulf of interpretation of
the results. In addition, the spacetime exploration model is
not suited to answer questions about the data�ow of values.

8 Conclusion

We have proposed the idea of a universal tracing mode to
make the information required for omniscient debugging
available whenever needed in tools for exploratory program-
ming. Furthermore, we proposed spacetime exploration, a
novel interaction model for such tools that focuses on explor-
ing the space and time of a program, e�ectively combining
the concepts of object inspection and (process) debugging
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into a single work�ow. We have demonstrated its feasibility
by implementing a prototypical spacetime inspector for the
TraceDebugger in Squeak/Smalltalk and illustrating its use
for two concrete scenarios. While in-situ omniscient debug-
ging still comes with trade-o�s for ensuring a responsive
system with short feedback loops, we believe that program-
mers can get the feeling of having a powerful program tracer
always available at their �ngertips.

We believe that spacetime exploration can improve the ex-
perience of program exploration by keeping programmers fo-
cused and able to precisely express comprehension questions
about space and time. Interactive domain-speci�c and task-
speci�c views representing the objects under exploration can
further provide rich contextual information, which connects
to the well-known challenges and opportunities of software
visualization. So far, we have optimized spacetime explo-
ration for focusing on a single object. Programmers might
also want to ask questions about systems that distribute rel-
evant state across multiple objects or that do not provide a
coherent state model, looking for refactoring opportunities.
Further research is needed to extend our model to questions
that depend on the data�ow of information such as when
debugging infection chains.
In the future, we want to further generalize our interac-

tion model and explore how it can be used as an overarching
concept for all kinds of exploratory programming activities.
To this end, we plan to make it possible to combine multiple
views in the spacetime inspector, explore alternative means
of �ltering space and time, and extend our experience in con-
necting di�erent domains to the spacetime inspector through
domain-speci�c views. There have been several promising
tool-construction frameworks (or concepts) that aim for �ex-
ible, task-speci�c view composition [4, 36]. Ultimately, we
envision a perspective on symbolic (omniscient) debuggers
that subsumes them under the spacetime exploration model
by taking an object-centric view on the execution artifacts,
and from where we can use our existing mechanics for �l-
ters and drill-downs through space and time to explore new
means of navigation in omniscient debuggers.
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