
Toward Patterns of Exploratory Programming
Practice

Marcel Taeumel and Patrick Rein and Robert Hirschfeld

Abstract Patterns document best practices in many domains. For a long time, prac-
titioners in the field of software engineering have been collecting and using such
patterns too, to approach recurring design challenges. However, the challenges of
efficient problem understanding and solution revising have no such form for effi-
ciently communicating programming practice. It takes a long time to discover and
learn such exploratory skills when using programming tools as is, without thorough
reflection. We want to apply the idea of patterns to capture traditional and modern
practices of exploratory programming. In this chapter, we begin to draft a pattern
language, starting with four patterns to enable and control exploration, which we
extracted from personal programming practice and experience.

1 Introduction

Software development often has the characteristics of a wicked problem [4]. Cre-
ating “good” software requires fulfilling external requirements relevant to the users
and internal requirements relevant for the developers of the system. Users value
easy-to-learn interfaces and useful features; developers appreciate code that can be
understood by others and architectural designs that can be adapted easily. Such me-
diation between two sometimes quite different sides entails constant communication
efforts as depicted in Figure 1. Often, we discover some of these (external and inter-

Marcel Taeumel
Hasso Platter Institute, 14482 Potsdam, Germany, e-mail: marcel.taeumel@hpi.uni-potsdam.
de

Patrick Rein
Hasso Platter Institute, 14482 Potsdam, Germany, e-mail: patrick.rein@hpi.uni-potsdam.de

Robert Hirschfeld
Hasso Platter Institute, 14482 Potsdam, Germany, e-mail: robert.hirschfeld@hpi.
uni-potsdam.de

1

marcel.taeumel@hpi.uni-potsdam.de
marcel.taeumel@hpi.uni-potsdam.de
patrick.rein@hpi.uni-potsdam.de
robert.hirschfeld@hpi.uni-potsdam.de
robert.hirschfeld@hpi.uni-potsdam.de
Robert Hirschfeld
In Christoph Meinel and Larry Leifer (eds.).
Design Thinking Research: Translation, Prototyping, and Measurement (pages 127-150)
Springer 2021 (doi:10.1007/978-3-030-76324-4_7)



2 Marcel Taeumel and Patrick Rein and Robert Hirschfeld

nal) requirements only after we build a version of the software. Given the complexity
of many software systems, such timing can be fatal: we will only understand the full
consequences at a point where systems become very difficult to change.

User
Customer

Stakeholder
…

Experiences
Best Prac�ces
Pa�erns
…

Design Thinking
Agile Methods

Design Thinking
Exploratory Methods

Design Thinking
Agile Methods

Design Thinking
Exploratory Methods

External So�ware Quality Internal So�ware Quality

Fig. 1 Software developers mediate between user requirements and technical implementation. The
goal is to master the implementation side and find a program design that can quickly adapt to
changing user requirements.

To tackle such “wickedness,” some programmers engage in an intensive form
of exploring the problem and solution space. When reasoning about their designs,
they follow a programming style called “exploratory programming” [22, 27]. In this
style, programmers do not try to construct the perfect solution right away, but aim to
deeply understand the problem at hand, including possible solutions. They achieve
such immersion by creating various prototypical implementations [27, 13], which
they can directly try out and refine to eventually look at the system from many
different perspectives. Thereby, the exploration process consists of many small, yet
insightful, experimental changes to the prototype, whose consequences programmers
can directly observe and learn from [27].

However, the actual skill set around exploratory programming is still difficult
to learn. Proficient programmers typically invest years to acquire a number of best
practices to support exploration: How to keep the overhead of iteration low? How to
avoid breaking the system?How to get detailed feedback for answering any particular
question? —Experienced programmers do not only know the steps to be taken, but
also which ones work best in a particular situation, and how to adapt them to new
ones. This knowledge is the result of years of practice or direct observation of other
programmers during their explorations. There is no form to efficiently pass on this
specific knowledge to the next generation of programmers.

Wewant to ease the learning of exploratory programming style by uncovering and
documenting best practices as patterns. Patterns are a concise formof communicating
the core of a solution obtained through experience [2, 1]. Patterns typically describe
the problem they are tackling, the context in which they are to be applied, the
core of the solution, and its consequences. Depending on a pattern’s subject (or
domain), some of these parts are left out or described in more detail. A common
property of all pattern collections is their generative nature. By adapting the essential



Toward Patterns of Exploratory Programming Practice 3

part of the solution, they can be used to generate solutions that are tailored to
new, unforeseen challenges.—We think that the pattern form is suitable to describe
exploratory programming practices. Their structure can provide guidance to help us
describe all relevant aspects of such practices, while at the same time being flexible
enough to cover a variety of practices.

Where does the pattern form originate? The first-ever published pattern
collection describes solutions for creating and shaping the living environment,
including towns, houses, and individual rooms [2]. One such pattern is “six
foot balcony.” This pattern first describes the context in which the pattern is to
be used: It then goes on to describe the main problem it tackles: “Balconies and
porches which are less than six feet deep are hardly ever used.” The problem is
discussed further by describing the observation of how people make different
use of balconies that are narrow and ones that are deep. The pattern then
discusses the solution including variations such as enclosing balconies or
recessing them into buildings:

“Whenever you build a balcony, a porch, a gallery, or a terrace always make it at
least six feet deep. If possible, recess at least part of it into the building so that it is
not cantilevered out and separated from the building by a simple line, and enclose it
partially.” —Christopher Alexander [2, p. 784]

The patterns in our collection are based on the experience of our research group.
This experience is the result of more than a decade of research and education
around exploratory programming systems. For both aims, we employ two exploratory
programming environments: Squeak/Smalltalk [11, 7] and Lively [10, 14, 15]. In
research, we create tools to support exploration of software designs by allowing
programmers to change running systems, quickly adapt their tools to the task at
hand, and gain more insights into the actual behavior of their system [15, 24, 19]. In
education, we conduct lectures on software architecture and software engineering, as
well as other courses on software design, end-user programming, and tool building.
All these courses include practical work in one of these environments. This provides
us with ample opportunity to observe the typical struggles of beginners in such
environments.



4 Marcel Taeumel and Patrick Rein and Robert Hirschfeld

This chapter presents a first draft of four relevant patterns on exploratory program-
ming, which we observed in object-oriented system programming. Our contribution
is as follows:

• “Tangible Names” and “Tangible Pixels”—Two patterns to enable exploration,
which clarify the textual and graphical aspects of environments as entry points.

• “Configurable Constraints” and “Reliable Recovery”—Two patterns to control
exploration, which clarify the aspect of trust in the environment as to avoid
getting lost or wreaking havoc.

In section 2, we provide more detail on how and where we found the patterns
for this chapter, that is, our experience with teaching and research in object-oriented
programming systems. The following two sections describe the patterns: section 3
for enabling exploration and section 4 for controlling exploration. We close those
descriptions with a reflective discussion on their maturity in section 5 as this is the
first iteration of a pattern collection for exploratory programming. We conclude our
thoughts in section 6.

2 From Experience to Pattern Form

We precede the presentation of this chapter’s patterns on exploratory programming
practice with more background on our expertise in object-oriented programming
systems. At the end, we sketch the actual pattern form that we use, which deviates
from existing pattern catalogs but fits our needs for capturing those practices.

2.1 Our Programming Experiences

The patterns described in this chapter result from our own experience with ex-
ploratory programming. To provide you with a background for the patterns, we will
briefly outline our experience. We are a research group of 14 people focusing on
programming tools and experience. Our experience with exploratory programming
stems from engaging in it ourselves, from research around corresponding tools and
environments, and from teaching undergraduate and graduate courses in exploratory
environments.

Our research revolves around exploratory and live programming [21]. As part of
this research, we design and create new tools and programming environments, de-
signed to support specific exploratory practices. Many of the ideas and environments
we build upon originated from the Learning Research Group at Xerox PARC [12].
The systems and ideas, which have stood the test of time, form the foundation for
many of the following projects.

Exploratory programming entails new situations that are not supported by exist-
ing tools. The Vivide environment [26, 25, 24] supports exploratory programmers



Toward Patterns of Exploratory Programming Practice 5

in creating new tools or adapting their tools quickly to such new situations. The
Babylonian Programming systems [19, 20, 18] allow programmers to annotate their
source code with examples that are then used to display the results of expressions
directly within the source code. Thus, they can get feedback on dynamic behavior
anywhere in the environment. The Lively environments [10, 15] bring the ideas
of exploratory programming to web programming by allowing programmers to de-
velop a web application from within itself. As modern applications are often based
on several languages, the Squimera and the TruffleSqueak environment support ex-
ploratory programming for such systems through polyglot exploratory tools [17, 18].
Finally, as exploration involves the creation of alternative solutions, the CoExist
environment supports programmers with managing and switching between multiple
variations [23].

These systems, and similar ones created by others, are designed to support ex-
ploratory practices. Tomake use of them, programmers need to have basic knowledge
of exploratory practices, so that they can recognize how the tool supports them and
to recognize situations in which the tool or environment is applicable.

We have experience in teaching exploratory programming on the undergraduate
as well as the graduate level. For most of our courses we use Squeak/Smalltalk. As
we teach undergraduate courses and many students continue their graduate studies
at our university, we can work with the same students several times during their
studies. At the undergraduate level, we teach two lectures, one on software archi-
tecture and one on software engineering, each spanning three months. During these
lectures, the students work on projects in Squeak/Smalltalk. At the graduate level, we
teach seminars on software design, programming tools, execution environments, and
modularity. All of the seminars focus on project work in Squeak/Smalltalk or Lively.
Throughout this time, we are able to observe how they acquire exploratory program-
ming practices. While these observations are not empirically verified, they serve as
a starting ground to determine which practices beginners pick up by themselves and
which ones need to be taught explicitly, for example through patterns. A general ob-
servation is that students progress from learning the language Smalltalk, to learning
individual tools of Squeak/Smalltalk, to making use of the whole environment, and
eventually learning more general practices of exploratory programming.

2.2 A Purely Object-oriented Programming System

We describe the solution and examples of each pattern from the perspective of
purely object-oriented, exploratory programming systems [29], namely Squeak/S-
malltalk [11, 7]. To make the pattern descriptions accessible, we provide a short
background on this perspective by briefly introducing the basic concepts.

The main element of such systems are objects. Objects are used to represent
entities relevant to the system, for example a domain-specific entity such as a person,
a system-specific entity such as a file, or basic information such as a number. In
particular, an object stores the data relevant for that entity, for example a person’s



6 Marcel Taeumel and Patrick Rein and Robert Hirschfeld

name and date of birth, or a file’s most recent modification timestamp. Beyond
the data, an object also has behavior, which can be invoked by sending a message
to the object. The sum of all behaviors of all objects defines the behavior of the
system. The behavior of objects is typically the same for all objects of the same
kind, for example all chat message objects can be send to a person and can create an
object representing a reply message. This common behavior of one kind of object
is captured in an abstraction called a class, for example a chat message class. All
objects of one kind have the same class. Thereby, the behavior described in the class
is re-used for all those objects.

Beyond this basic principle, the Squeak/Smalltalk perspective takes a different
angle on the notion of systems and programs. In Smalltalk systems, the program
or application to be created is part of the running programming environment. So,
programmers do not create a program or system outside of the environment, but
change the running environment itself from within to make it behave the way they
want. As programmers can access anything in that environment, and the environment
is the running program or application they want to modify, they can access all parts
of the running program or application. To store such a system and share it with other,
Smalltalk systems can be saved into an image. This feature is similar to hibernation
in operating systems; all state and all running processes is saved into a file. The
system can be restarted from that image file and will be in the exact same state as it
was when the programmers saved it.

2.3 Pattern Audience

Our pattern collection is motivated by making exploratory programming practices
learnable by novices. Thereby, programmers are users of an environment and try to
employ the practices during programming. However, programmers can also be the
builders of their environments. As such, they might want to make use of the patterns
to get guidance in how to shape an environment for exploratory programming.

For learning the practices, the patterns are useful for exploratory programming
novices and experts alike. When talking about novices, we refer to programmers
new to exploratory programming. This includes programming novices, who are
unfamiliar with programming in general, as well as programming experts, who are
already familiar with programming, but not with exploratory programming. Both
benefit from the pattern representation of practices. So far, learning exploratory
programming either required a lot of time to build up personal experience, or an
experienced teacher, regularly demonstrating practices by example.With the patterns,
novices can now learn the practices by themselves.

Experts of exploratory programming may still benefit from the practices. As there
are no written, in-detail descriptions of the practices of exploratory programming,
most programmers only have their individual experience to go by. Through the
patterns, they can contrast their implicit techniques with the experience of others.



Toward Patterns of Exploratory Programming Practice 7

Further, they may discover variations within and commonalities between practices
they are not aware of, which might make their practices more effective.

Independent of a programmer’s skill level, the patterns may help programmers
building tools and languages fit for exploration. Tool builders may refer to the
exploratory programming patterns to determine what their language or environment
needs are to support certain practices. Further, theymight choose to support particular
practices and the patterns may provide some background on when the practice is
used or how it may be altered by programmers.

2.4 Pattern Form

Since the introduction of patterns [2, 1], different communities and authors have
taken up the idea and created their own pattern collections. While they all agree on
the idea of a pattern as the description of the core of a solution, they differ in the
form they use to describe the patterns. The main difference between these forms is
the list of aspects described for each pattern.

The original pattern descriptions by Christopher Alexander consist of the name
of the pattern, the context, the problem described as a set of forces, the solution,
trade-offs in the solution, and a set of related patterns. The “Gang-of-Four” book,
which popularized patterns in the software development community, uses a more
form that includes several detailed sections describing the solution [6]. Yet another
form was used in the learning and presentation patterns [9, 8], which featured a
summary of the pattern consisting of only one line.

For this chapter, we use the following form:

• Intent is a short summary of the pattern including the fundamental chal-
lenge as well as a glimpse of the solution.

• Motivation describes the problem programmers might encounter during
their exploration. It describes the domain and the context in which the
problem occurs. This section concludes with a summary of why program-
mers may develop a “desire for exploration” in this situation.

• Forces to Resolve describes the different constraints and considerations
when applying the practice. Whenever adapting the pattern to a specific
situation, these forces may influence the specific adaptations.

• (Towards a) Solution describes the specific techniques making up the
practice, including variations.

• Consequences describes what is required from a programming system to
support this practice. It also points out technical challenges that may arise
during the particular practice used in exploration.

• Notes on Squeak/Smalltalk illustrate how the practice would be applied
in the Squeak/Smalltalk system.



8 Marcel Taeumel and Patrick Rein and Robert Hirschfeld

3 Patterns to Enable Exploration

Our first collection of two patterns is about enabling exploration. In purely object-
oriented systems, there is much structured information available. When investigating
bugs or adding features, programmers access the object graph to understand what
is there and what is missing. When explicating thoughts, programmers benefit from
naming objects and then organizing those tangible references in spaces. Since mod-
ern programming tools offer graphical interfaces, programmers also have to make
sense of a program’s visual output. In sum, this combination of typing (names) and
clicking (on shapes) represents an entry point to exploratory practice.

3.1 Tangible Names

Maybe also known as “Object Bindings” or “Names in Spaces.”

Intent

Names help people denote accessible meaning of otherwise transient thoughts.
Therefore, programmers should use names to organize not only code artifacts but all
relevant objects. Programming environments should allow for flexible attachment of
such names. Consequently, the use of established vocabulary should yield access to
the underlying artifacts.

Motivation

In object-oriented environments, all structured information is represented as objects
that have relationships to other objects. Those structures can be very deep and thus
hard to follow and abstract. Code objects typically have intrinsic names to be easily
identified. Many other objects, especially those that occur at run-time, may not have
a (derived) textual representation that helps programmers in their understanding.

Programmers are in a constant learning process. They communicate with do-
main experts (or customers) to understand the rules and requirements that should
be somehow represented in code. Along the way, programmers make all kinds of
observations—such as computational results—that need to be documented to not get
lost. Ideas emerge and become clearer. Consequently, such emergent clarity needs
to be denoted before becoming program code, like sticky notes in the programming
environment.

Programmers work with names on a regular basis because source code is filled
with such textual identifiers for classes, methods, and all kinds of variables. Names
help explicate thoughts; they encode meaning. In an environment where all kinds of
objects can be materialized thoughts, names play an important role in keeping track.



Toward Patterns of Exploratory Programming Practice 9

The question is whether programmers are willing to write down and handle names
when talking (and reasoning) about programs and their informational trails.

Today’s programming tools are full of textual labels. There are code browsers or
object inspectors, which employ text fields or lists with labels. Programmers rely on
their recognition of an object’s intrinsic names to look up and find information of
interest. Also, text-based search is a common entry point in program understanding.
Programmers just type (part of a) name into a text field and expect interesting objects
to show up in a (text-based) result list. Name it, spell it, type it, find it.

Programmers’ Desire for Exploration. An object’s inherent structure does
not yield a name appropriate for the current task. The programmer wants
to reduce cognitive load by explicating and working with new names in the
environment:

• Attach a name to an object for later reference.
• Look up the object structure for any name that is visible on screen.
• Share names between several tools (or scopes).
• Organize thoughts on different levels such as domain, task, or personal.

Such names may change. They can be mere nicknames (or mnemonics) in the
beginning.

Forces to Resolve

Programmers usually understand the importance of good names in source code, but
they might hesitate to bring the same attention to names that appear in the entire
programming environment:

• Names may not be reachable outside a certain tool or other scope.
• In the “offline” world, taking notes is very easy.
• Arbitrary name lookup is not possible for arbitrary labels in (graphical) tools.
• A good name is hard to find.
• Recognizing a name on screen “feels good” and reduces cognitive load.
• Extra references to objects consume extra resources in the environment.
• The same name can change meaning over time.

(Toward a) Solution

Programmers have to come up with and refer to names all the time when writing
or reading source code. This very habit (or custom) is the base for working with
tangible names during exploration. Names can be very helpful to organize objects,
even outside a program’s code base.



10 Marcel Taeumel and Patrick Rein and Robert Hirschfeld

Know about and rely on the system’s vocabulary. At the beginning of an
exploratory session, programmers work with the names that already exist and are
accessible for technical artifacts. For example, there are package names, class names,
or method names. Besides such language artifacts, there can be names for run-time
objects such as the current process and active method. The environment should make
this basic level accessible through names to serve as entry points for exploration. The
programmers’ thoughts may spin around those technical artifacts, which triggers the
desire to learn more about what’s going on.

Just write down that name. Once an idea or observation starts to gain clarity,
programmers will try to describe it to explicate meaning—or at least give it a token
to further think about it, to not forget about it. In the programming environment,
programmers should be able to just type names for further reference. There might
not even be an object attached to such names yet. Still, programmers can now go
looking for objects that deserve such names.

Attach (more appropriate) names to objects.Many programming tools display
characteristic object structure in textual form. Given a programmer’s current task, a
name may come up that would serve as a more appropriate identifier. Programmers
should attach such a name to the particular object so that its meaning can be recalled
more easily. Programming environments should allow for adding any number of
extra names to objects.

Organize names in spaces. Programmers should find “an empty sheet of paper”
or “a clean whiteboard” to document their thoughts in the exploration process with
little friction loss. For example, windows with big empty text fields are common
metaphor to represent such spaces on screen. Such spaces can directly represent
task scopes; they may be even expanded to document overall domain knowledge.
Programmers can collect names and attach them to objects on the fly. Like sticky
notes on whiteboards, names can be moved around to influence each other in the
overall process of program understanding.

Resolve names to reveal structure.Within a certain space, programmers should
be able to directly resolve the names they have just typed or observed in a tool’s
graphical display. The environment should keep track of the names’ connection to
the underlying object and hence the structured information. As an effect, the object’s
(intrinsic) textual form can appear or a more sophisticated tool can offer a means
to explore structure. In text widgets, such name lookup resembles code evaluation.
In list widgets, the connection of any visual label to an underlying model (and thus
object) might be more challenging if not supported by the tool framework.

Combine spaces to integrate exploration paths. Programmers should reflect on
the spaces they currently use for name collection. Related themesmay emerge, which
requires to combine spaces (or at least bring names over from one space to another.)
Programmers should avoid connecting “loose ends” in offline notes. Instead, they
should employ the means in the (digital) environment such as shared clipboards or
drag-and-drop gestures. Consequently, the environment should offer a basic model
for tool (and thus name) integration without compromising data quality.

Dismiss the spaces you no longer need. Programmers should reflect on their
current task’s progress. Once finished, spaces should be dismissed. Adding extra



Toward Patterns of Exploratory Programming Practice 11

names to objects may interfere with the environment’s automatic clean-up mech-
anism. Since resources are usually limited, discarding names (or entire spaces) is
part of the exploratory process. Note that there are usually means to recover from
mistakes. Some environments may offer automatic dismissal of no longer needed
spaces, which programmers may have to configure to accommodate their working
habits.

Consequences

Being able to name objects requires object representations for information in the
environment. External data can usually be imported as generic structures such as
maps and dictionaries. Materializing low-level language (and run-time) concepts,
however, can be more challenging for the provider of the programming system. Yet,
programmers are likely to include “behavior” or “execution stack” in their thoughts
when thinking about specification and implementation.

Having the freedom of reasoning about any accessible object with new names in
custom spaces, programmers can easily break abstractions. There are environments
without a certain compilation boundary, that is, source code access to all parts in
a system, which demands a certain discipline for information hiding. Programmers
need to be aware of not “leaking” usually hidden information into new source code,
that is, after the exploratory session.

Aliasing is already a challenge in object-oriented architectures. During explo-
ration, programmers add even more names to the same objects, which makes iden-
tity a rather intangible, hardly explicable concept. As different (work)spaces support
overlapping names, tools for overviewmight mitigate this consequence. On the other
hand, working with external data (and distributed structures in general) implies a
comparable challenge outside the context of exploratory programming practice.

Names can point to outdated structure without programmers’ being aware of it.
Programs (under observation) only manage their point of view. Programmers hold
on to certain objects by chance, but have often no means to notice when related
objects “lose interest” in their direct neighbors.

Notes on Squeak/Smalltalk

In Squeak/Smalltalk, programmers can write notes into workspaces, which are inter-
active text buffers that support code evaluation like a read-eval-print loop (or REPL).
The Smalltalk language can be used as a scripting language in almost any other tool’s
text fields to set up new, but tool-local, name bindings. The combination of such
tool spaces is possible, for example, through global variables. There are globals (and
reserved keywords) that reference basic run-time information such as thisContext
for the active method (context) and ActiveWorld for the topmost GUI object.

Many graphical tools in Squeak retain a (more or less direct) connection between
visual label and underlying object. This connection allows programmers to explore



12 Marcel Taeumel and Patrick Rein and Robert Hirschfeld

underlying structure through simple pop-upmenus or drag-and-drop gestures. Vivide
[26, 25, 24] is a tool-construction framework on top of Squeak/Morph that preserves
such a direct connection in the GUI by design. Consequently, programmers can
resolve names not only in text fields but other interactive widgets, too.

3.2 Tangible Pixels

Maybe also known as “Meta Menu” or “Shape Halo” or (more generic) “Direct
Manipulation Interface.”

Intent

Visual shapes can raise attention and trigger curiosity to explore. Programmers use
interactive spaces to organize graphical representations on screen. Programming
environments should allow to “look behind” visual shapes to explore the underlying
objects and relationships. In practice, programmers can point and click to manipulate
such shapes directly.

Motivation

Using high-resolution, graphical displays, programmers can create convincing illu-
sions of tangibility merely through colorful pixels on a two-dimensional plane. Even
if a program-under-construction has no elaborate visuals itself, today’s program-
ming tools (and environments) can offer visualization to clarify (code) structure.
The question is whether programmers accept graphical interfaces only from a user’s
perspective or whether they also try to work with visual shapes as a tangible medium
under construction.

The shared (programming) environment uses objects to represent everything, in-
cluding graphical primitives. There can easily be extra gateways to connect “what is
visible” to “what it is made of.” Sometimes, a widget’s affordances guide program-
mers to shorten the feedback loop in their exploratory journeys—such as clicking a
button nearby to reveal a pop-up menu. Yet, extra (hidden) gestures may have to be
learned to enable exploration.

While the connection between a visual shape to any underlying object may be
simple, finding useful paths to descriptive model data may not be. That is, spatial
distance can be reduced with elegant software design, while semantic or temporal
distance often remains part of the exploration efforts.



Toward Patterns of Exploratory Programming Practice 13

Programmers’ Desire for Exploration. A visual shape on screen makes the
programmer curious because it may indicate a bug or place for a new feature.
The programmer wants to reduce cognitive load by directly navigating from
the pixels to objects and hence structured information:

• Understand the structure behind flat pixels.
• Open tools to explore that structure, to make it tangible.
• Keep the connection between tools and visuals on screen.
• Organize thoughts on different levels such as domain, task, or personal.

Direct manipulation (for exploration) helps shorten the feedback loop.

Forces to Resolve

Programmers usually design graphical interfaces for usage only, not for exploratory
(debugging) practice. Still wanting to understand how the underlying objects enable
the program’s purpose, programmers might hesitate to even try using the same
interface to also “look behind the curtains,” that is, the visual shapes. The following
forces emerge:

• The program’s GUI has no extra code to enable debugging.
• Visual objects should directly relate to model data in the domain.
• The scene graph is too deep and complex.
• The visuals are too small to point at.
• There are no distinct, steady shapes; it is more like animation.

(Toward a) Solution

Graphical output is often the “result” of the system. Starting the exploration from
theremeans programmers start from something that they can grasp and that is already
tied to a purpose.

Point and hover. Many visual shapes on screen offer extra information when
programmers hover the mouse cursor over them and wait for a bit. Then, descriptive
tooltips (or balloon texts) appear as overlays nearby. Such user interaction strengthens
the blending of pixels into tangible compounds (or graphical objects). In program-
ming tools, the revealed insight can indeed help programmers to look at object
structure. In other (regular) programs, such information might be targeted toward its
users, not programmers who what to “look behind the curtain.”

Look for and click on meta buttons. There are UI elements that do not invoke
immediate side effects on the system (or program). Such elements are often clickable
buttons that offer possible actions through pop-up menus. Looking at such actions,
programmers can get a better understanding of what object is actually displayed in



14 Marcel Taeumel and Patrick Rein and Robert Hirschfeld

pixels nearby. Similar to hover effects, the emerging visual compounds support the
connection between pixels and underlying structure.

Employ reserved (meta) input gestures. Three-button mice render click-on
instructions ambiguous. The primary click on, for example, buttons or list elements
is part of the common bi-manual interaction mode—keyboard plus mouse. Yet, there
can be many other input gestures (such as keyboard shortcuts) that encode special
modes or means to interact with visual shapes. Users may want to talk about a thing
on screen when they perform a secondary click and expect a pop-up menu to show
up. Programmers should know such meta gestures as they might exploit underlying
objects. There are environments that make the entire scene graph tangible.

Enter gateways to reach (meta) tools. Programmers should follow the shortest
path available to explore the connection between the visuals on screen and the
underlying object structure. Programming environments should allow for such short
paths through reserved input gestures. That is, there should be a connection between
a program’s run-time objects and the objects that make up the source code (or other
resources).

Organize programs and tools in spaces.When the environment offers themeans
to explore running programs and structure-revealing tools side by side, programmers
should organize those in (visual) spaces. Such spaces help document exploration
paths (and overall progress) in a tangible way.

Consequences

The visual design may be in conflict with serving both user and programmer. Allo-
cating extra screen space for buttons (or similar) might confuse users, which would
defeat the primary purpose of that program. Also, increasing shapes’ sizes so that
programmers can click on and “look behind” the surface might not be a viable option
either.

Extra input gestures—dedicated to exploratory programming—would not be use-
ful for regular users.Already, there is often a dispute on supporting commonkeyboard
shortcuts for common (user) operations. Mouse buttons are limited and so are keys
on the keyboard. Taking away more options would interfere with this discussion
from a new perspective.

Programmers would have to learn about extra interface elements and how to use
them while running the program under construction. It can already be challenging to
organize non-visual objects, and separate essential from supportive. Visual objects
further aggravate this issue. User interface and programming interface might blend,
which could be okay for programmers, but frustrating for users.

Depending on the system’s rendering pipeline, preserving a pixel-to-object map-
ping can be challenging. If not supported by the underlying graphics framework by
design, extra programming effort may be required to at least offer such a connection
for selected programs.



Toward Patterns of Exploratory Programming Practice 15

Notes on Squeak/Smalltalk

Squeak has always supported one-button mice in making point-and-click interfaces
discoverable and simple to use. For example, there is a button for a list widget’s
menu, placed in the scrollbar. There is no need to learn a secondary click: rather the
user first clicks on a list element, then clicks on the menu button to show available
actions for that element. Note that three-button mice are also supported. In that case,
the secondary click avoids extra mouse movement.

In Squeak/Morphic, all graphical objects—so-called morphs—can be selected
through a special gesture. Then, a “context menu” appears in the form of a halo
around that object. While this menu can be used as part of the regular user interface,
it also offers a gateway to programming tools such as object inspectors and code
browsers. The halo concept originates in the outliner in the Self system [28].

The collection of pixels that represent a graphical object can be difficult to see.
TheMorphic halo appears as a rectangular “outline”, which can be invokedwhenever
the programmer has a reference to such a graphical object (or morph). Consequently,
there is also a direct connection from object to pixels—not just the other way around.

4 Patterns to Control Exploration

Our second collection of two patterns is about controlling exploration. Programmers
have to trust their programming environment and tools. While learning about a
problem domain, implementation strategies, and personal preferences, programmers
will gain trust in their tools if those can mirror that progress. If one’s mindset can be
observed on the screen, programmers will get a feeling of being in control. First, they
can set up boundaries to avoid making mistakes and derailing, but staying focused
instead. Second, they can establish an area to safely work within, which includes
reliable recovery and cleaning up after the exploration task.

4.1 Configurable Constraints

Maybe also known as “Configurable Guides” or (more generic) “Domain-specific
Environments.”

Intent

“With great power comes great responsibility.” Being deep in an exploration activity,
programmers benefit frommeaningful limitations while they progress—to stay in fo-
cus and avoid mistakes. Programming environments should allow for configurations
that constrain or guide the tangible notion of names and pixels.



16 Marcel Taeumel and Patrick Rein and Robert Hirschfeld

Motivation

To foster the programmer’s mindset for exploration, the environment should take
care of traps that would otherwise distract or intimidate. When programmers have
to fear drastic consequences, they might resort to unchecked hypotheses instead of
exploring and learning about what is really happening. In self-sustaining systems,
such consequences could entail broken tools or lost data, which in turn means higher
costs in the software development process.

Distraction may come from standard tools showing irrelevant information such
as low-level code in debuggers or irrelevant modules in browsers. Intimidation may
come from a sheer overwhelming amount of possibilities. Luckily, many tools can be
tailored to specific exploration strategies. Programmers can reduce cognitive effort
when screen contents match their mental model as closely as possible.

Domain-specific tools can help guide programmers actions in a generic fash-
ion. That is, a tool’s specificity can complement its expressiveness. Programmers
should always stay in control; they decide how they want to proceed. Tools (and
environments), however, help programmers remember and apply best practices.

Programmers’ Desire for Exploration. Programming environments offer
many complementary tools. Programmers have to explore their choice of tools
as well as the information visible through these tools:

• Keep going and stay in focus.
• Explore relevant object structure.
• Hide irrelevant implementation details.
• Use non-limiting support for the current task.

Meaningful constraints can promote a state of “flow” [3] in exploratory pro-
gramming.

Forces to Resolve

When not following a single plan but exploring possibilities to gain understanding,
programmers may hesitate to freely embrace exploration within the programming
system:

• It is hard to recover therefore mistakes must be avoided.
• It is hard to focus because generic programming tools “leak” implementation

details.
• It is hard to proceed because domain-specific tools impede general-purpose pro-

gramming if needed.



Toward Patterns of Exploratory Programming Practice 17

(Toward a) Solution

Programmers can avoid many mistakes and stay focused within exploration by mas-
tering the means of representing information in the environment. That is, they have
to choose the right tools, tweak tool parameters, and know when to change plans.

Choose tools appropriate for exploration. Programming environments usually
have many different tools for many different programming tasks. There is often no
“one fits all” solution; a notable overlap in tool features can occur. Programmers
should choose from tools that fit the desired exploration strategy. Selection criteria
include accessibility and representation of relevant software artifacts.

Configure to accommodate specific needs. Programming tools are often “gen-
eral purpose” but also offer configuration parameters to accommodate specific do-
mains, tasks, or personal preferences. Therefore, programmers should schedule extra
time to tweak those parameters. Especially at the beginning of exploration, known
characteristics of the current problem domain can already be included.

Reflect and realize when to change strategies.Being deep within an exploration
path, programmers should account for extra time to reflect on the current working
mode. Different tools might be more appropriate to continue, including generic code
browsers. Different configurations of the tools in use might yield more promising
results. That is, exploring the problem and solution spaces includes exploring the
available means to do so.

Start exploration in empty spaces. Programmers should avoid interfering with
the results of other work in the system. A new exploration (path) should start in a
rather empty space such as a new instance of a tool window. Programming environ-
ments should account for having enough space to follow many different hunches.

Migrate progress to new tools.When programmers choose to switch tools, they
should also try to bring existing insights along. That is, all names and meaningful
objects, including visuals, should remain (somewhat) accessible in the other tool’s
interface. There will be compromise because different tools have different strengths
and levels of data support.

Consequences

Tool configurationmay blend into tool construction, whichmay take unexpected time
and effort. Especially in open systems where programmers can access and modify
the entire codebase, one has to carefully “timebox” any attempt to change the status
quo. Thus, the matter of “staying focused” becomes double-edged: using tools and
also configuring them.

Switching tools and transferring (intermediate) results may only work within
a certain environmental boundary. If the underlying representation of structured
information differs fundamentally, programmers might have to compromise and
serialize parts of this information as they see fit. If such a reduction in quality
is not an option, programmers can try to integrate external tools directly into the
programming environment.



18 Marcel Taeumel and Patrick Rein and Robert Hirschfeld

Trial-and-error remains part of the exploration process. Programmers cannot
always know when to switch tools. In any case, the overall programming task may
still be “timeboxed,” leaving only limited resources for out-of-plan exploration.
However, such a limitation can be an obvious trigger for programmers to “just try
something different” in any remaining period.

Notes on Squeak/Smalltalk

Squeak comes with tools that are tailored to the Smalltalk language. Class browsers
show source code; object inspectors show instance variables; debuggers accurately
display the context of method activations. Consequently, guidance comes from the
(hopefully descriptive) names of code artifacts. While there are simple filters, pro-
grammers have to selectively disregard unrelated information. There are no on-board
means for higher-level, domain-specific perspectives that could guide exploration.

Luckily, there are frameworks and libraries that build on top of Squeak/Morphic,
which programmers can install to support exploration. These includes projects that
aim to improve programming education and programming experience in general. Yet,
they can play part of their role in (general purpose) exploratory practice. Etoys [5]
and Scratch [16], for example, both hide textual code complexity through visual
shapes—meant to be composed and explored through click, drag, and drop. Then,
there is Babylonian programming [21, 19, 18], which embeds concrete values into
abstract code so that programmers do not have to stray and lose time in breakpoint-
triggered debuggers. There are also object-focused, script-based means to construct
new tools for exploration with the Vivide framework [26, 25, 24]. Programmers
therefore have many alternatives to choose from.

4.2 Reliable Recovery

Maybe also known as “Safety Net” or “Back to the Start” or “Checkpoints.”

Intent

Programmers leave traces during exploration. Those traces may need to be altered
when backtracking or removed when finishing. Programming environments should
allow for configurations that manage (or constrain) side effects on software artifacts
(including the tangible notion of names and pixels).



Toward Patterns of Exploratory Programming Practice 19

Motivation

Programmers consume many different kinds of information when trying to un-
derstand programs and possibilities. Yet, consumption can entail change such as
disassembling a closed box. It is thus advisable to take extra care to scope the effects
of such exploration. That is, programmer’s do not just observe, but they actually
“poke around” to learn how specific objects react.

The most obvious solution—known from “traditional” programming practice—
is typically too costly: throw away everything and start over. There can be a non-
deterministic state, which is hard to replicate for another round of exploration. When
programmers are continuously modeling artifacts in a running system, restarting
might also imply tediously retyping source code or remodeling other essential re-
sources. Luckily, there have been approaches that shorten the cycle of recovery to
try again or continue work.

Programmers’ Desire for Exploration. Programming environments can be
both messy and tidy at the same time. It is very easy to create empty spaces; it
is “just” digital software. Programmers want to dive into the exploration task:

• Keep going and stay in focus.
• Backtrack when hitting a dead end.
• Clean up when finished exploring.
• Quickly recover when having broken something by accident.

Programmers can easily forget about that clean-up, which can later become a
reason for unnecessary recovery.

Forces to Resolve

Having the system’s state made of interconnected objects, programmers have to take
care of those objects and their relationships during exploration. Like cleaning up your
study may be not worth the effort, programmers may hesitate to follow exploratory
practices:

• Livingwith “brittle” (run-time) state around for too long feeds the urge to “reboot”
and start afresh.

• It is hard to disseminate the “broken” from the useful state.
• It is costly to throw “everything” away.
• It is hard to anticipate the effects of exploration tools (and actions) upfront.



20 Marcel Taeumel and Patrick Rein and Robert Hirschfeld

(Toward a) Solution

Even within a constrained and guided setup, programmers can make mistakes and
need to recover. A system’s object graph may just be too complex to foresee the
effects of every possible action.

Use tangible (and easily discardable) scopes. During exploration, program-
mers grow a collection of (perhaps newly) named objects. This collection should
represent a scope that can easily be dismissed when finished. The environment’s
resources are typically limited; automatic clean-up works only through computa-
tional, user-independent rules. Thus, programmers must explicitly indicate the state
of exploration as they see fit. A tangible scope can be pointed to, and thus helps with
such indication.

Establish distinct steps on a path. Programmers should modularize their explo-
ration path. At best, an obvious (only linearly dependent) sequence of steps (or tools
or scripts) can be re-evaluated repeatedly while the program (under observation)
keeps running. Along such paths, programmers can easily backtrack and revise their
choices.

Create checkpoints for safe retreat. Programmers should replicate (or copy) a
specific setting before experimenting with unknown side effects. This has a similar
effect to the way that children can have repeated fun by coloring (by numbers) on
a photocopy, rather than on the original. Programming environments should offer
clear guidelines to specify and duplicate (part of) the object graph. Clear boundaries,
like shielded sandboxes, can further help to establish trust between programmers and
their environment.

Hit the pause button to take a break. Exploration can be time-consuming.
Programmers have to consider their working schedule and thus maybe interrupt a
session. Thus, programming environments should offer a means to pause all action
in the running system—or selected modules. On the one hand, programmers can
then take a closer look at such "snapshot of time" to better understand the objects
and messages in situ. On the other hand, programmers can actually take a break and
rely on the system to continue running—exactly where it left off—the next day.

Consequences

Modularity in the exploration path largely depends on guides and constraints offered
through tools and their interfaces. If programmers would be forced to put much
effort into refactoring existing steps, chances are that they would not do it. Such extra
effort would interfere with their focus and thus interrupt the “flow.” Consequently,
the modular description of exploration steps is one of the primary challenges in
domain-specific tool construction.

At the same time, there can be too many checkpoints, outliving past exploration
tasks and demanding extra resources. Programmers might hesitate to discard (even
tangible) scopes because these form new objects of value, that is, documentation for
later use. There can always be new but similar challenges in the near future; one



Toward Patterns of Exploratory Programming Practice 21

cannot know upfront. Yet, the actual value of such (maybe outdated) checkpoints
can be difficult to assess, even in retrospect.

Programmers might avoid creating complete checkpoints for reasons of cost.
It might even be impossible to strive for completeness. External resources can be
especially difficult to grasp; stubbing them can interfere with trust in the exploration’s
outcome. In other words, working with real data is a problem force that is not
addressed through this pattern.

Notes on Squeak/Smalltalk

Squeak’s tools (and associated windows) can represent tangible scopes to organize
exploration and clean up after it. For example, programmers close workspace win-
dows to dismiss bindings and thus tangible names. They also organize multiple
windows in projects (or “desktops”), which can easily be closed to dismiss open
tools and thus tangible pixels.

Within a single workspace (window), programmers modularize (partial) scripts
through text lines of source code. Consequently, they are in charge of orchestrating
simple inspection or effectual experimentation. At best, programmers can re-evaluate
the entire code in aworkspacewithout breaking things or “polluting” the environment
with useless data.

Programmers can hit the key combination [CMD]+[.] at any point to suspend the
currently running process. That is, they can pause message passing for a specific
portion in the system, usually the UI process. After inspection, suspended processes
can then be resumed—or terminated to free resources. In combination with Squeak’s
image, programmers are basically in control of (execution) time. Yet, there is ongoing
research on how to offer more elaborate tools for immediate recovery in Squeak.
For example, CoExist [23] offers fine-granular revisions for code changes without
needing programmers’ anticipation of mistakes.

5 Discussion and Future Work

A pattern’s success is measured through relevance, quality, and impact. Its mere
discovery is of less importance. In this chapter, we attempt to describe aspects of
exploratory practice in pattern form for the first time. The result is a collection of
“drafts” that need to be polished and revised. Yet, the sole artifact of a pattern is not
useful unless applied in practice. That is, fellow programmers who use the practice
of exploratory programming should see value in our work. Therefore, like many
patterns and pattern-authors before us, we seek feedback from both practitioners in
the field and the pattern community—which takes time and several pattern-writing
workshops.

The patterns we drafted are very broad and leave many questions unanswered.
We made an attempt to formulate not only actions for programmers but also advice



22 Marcel Taeumel and Patrick Rein and Robert Hirschfeld

for tool builders. From experience we know that both tool usage and construction
go hand in hand. Indeed, it may be the same programmer who switches between
roles many times during the same programming task. Consequently, our patterns can
reveal shortcomings in programming environments regarding its tools and means for
construction. Since time is always a scarce resource in software development, some
patterns may thus not be feasible to apply. We want to address such situations in our
next revisions in also offering more paths to enable exploration.

In our next steps, we will tackle verbosity to make each pattern’s intent more
clear. Especially the solutions we propose in each pattern are likely to be split up
into patterns of their own, leaving the current form as possible categories for ori-
entation. Of course, when discovering complementary patterns or new perspectives
as a whole, the entire organization can change. In the process, we will also investi-
gate practices beyond object-oriented systems, because exploration happens in every
programming environment. Our vision is to collect and materialize an accessible
catalog of patterns—maybe even create a pattern language [2]—that can serve as a
reliable reference in daily programming practice.

6 Conclusion

In this chapter, we described typical approaches of exploratory programming prac-
tices as they occur in education and research through the Squeak/Smalltalk system.
We gained many of our own experiences with this system’s concepts, which already
originated in the 70s and hold up splendidly for today’s challenges. The system’s
purely object-oriented design offers many interesting perspectives on program un-
derstanding and debugging with short feedback loops. First, we covered patterns
to enable exploration, which unpacks the role of textual labels and visual shapes.
Second, we addressed patterns to control exploration, which emphasizes not only
avoiding mistakes but also embracing them through trusted means for recovery.

This chapter is only the first step toward a more substantial collection of patterns,
maybe a whole pattern language, that can serve programmers in many domains. Even
at this early stage, we implymany valuable aspects of exploratory programming prac-
tice to be further unpacked in pattern form. We believe that such a comprehensive,
accessible catalog can help connect many overlapping efforts in contemporary pro-
gramming language and tool research.

Acknowledgements We gratefully acknowledge the financial support of the HPI Research School
on Service-oriented Systems Engineering (www.hpi.de/en/research/research-schools)
and the Hasso Plattner Design Thinking Research Program (www.hpi.de/en/dtrp).

www.hpi.de/en/research/research-schools
www.hpi.de/en/dtrp


Toward Patterns of Exploratory Programming Practice 23

References

1. Alexander, C.: The Timeless Way of Building. Oxford University Press (1979)
2. Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I., Angel, S.: A

Pattern Language - Towns, Buildings, Construction. Oxford University Press (1977)
3. Csikszentmihalyi,M.: Flow: The Psychology ofOptimal Experience. Harper PerennialModern

Classics (2008)
4. DeGrace, P., Stahl, L.: Wicked Problems, Righteous Solutions: A Catalogue of Modern Soft-

ware Engineering Paradigms. Yourdon Press computing series. Yourdon Press (1990). URL
https://books.google.de/books?id=__omAAAAMAAJ

5. Freudenberg, B., Ohshima, Y., Wallace, S.: Etoys for one laptop per child. In: 2009 Seventh
International Conference on Creating, Connecting and Collaborating through Computing, pp.
57–64. IEEE (2009)

6. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley Longman Publishing Co., Inc., USA (1995)

7. Goldberg, A., Robson, D.: Smalltalk-80: The Language and Its Implementation. Addison-
Wesley Longman Publishing Co., Inc., Boston, Massachusetts, USA (1983)

8. Iba, T.: Presentation patterns: a pattern language for creative presentations. Lulu. com (2014)
9. Iba, T., Sakamoto, M.: Learning patterns III: a pattern language for creative learning. In:

L.B. Hvatum (ed.) Proceedings of the 18th Conference on Pattern Languages of Programs,
PLoP 2011, Portland, Oregon, USA, October 21-23, 2011, pp. 29:1–29:8. ACM (2011). DOI
10.1145/2578903.2579166. URL https://doi.org/10.1145/2578903.2579166

10. Ingalls, D., Felgentreff, T., Hirschfeld, R., Krahn, R., Lincke, J., Röder, M., Taivalsaari, A.,
Mikkonen, T.: A world of active objects for work and play: the first ten years of lively.
In: E. Visser, E.R. Murphy-Hill, C. Lopes (eds.) 2016 ACM International Symposium on
New Ideas, New Paradigms, and Reflections on Programming and Software, Onward! 2016,
Amsterdam, The Netherlands, November 2-4, 2016, pp. 238–249. ACM (2016). DOI 10.1145/
2986012.2986029. URL https://doi.org/10.1145/2986012.2986029

11. Ingalls, D., Kaehler, T., Maloney, J., Wallace, S., Kay, A.: Back to the future: The story of
squeak, a practical smalltalk written in itself. In: Proceedings of OOPSLA 1997, vol. 32,
pp. 318–326. ACM (1997). DOI 10.1145/263698.263754. URL http://doi.acm.org/10.
1145/263698.263754

12. Kay, A., Goldberg, A.: Personal dynamic media. Computer 10(3), 31–41 (1977)
13. Kery, M.B., Myers, B.A.: Exploring exploratory programming. In: A.Z. Henley, P. Rogers,

A. Sarma (eds.) 2017 IEEE Symposium on Visual Languages and Human-Centric Computing,
VL/HCC 2017, Raleigh, NC, USA, October 11-14, 2017, pp. 25–29. IEEE Computer Society
(2017). DOI 10.1109/VLHCC.2017.8103446. URL https://doi.org/10.1109/VLHCC.
2017.8103446

14. Lincke, J., Krahn, R., Ingalls, D., Röder, M., Hirschfeld, R.: The lively partsbin-a cloud-based
repository for collaborative development of active web content. In: 45th Hawaii International
International Conference on Systems Science (HICSS-45 2012), Proceedings, 4-7 January
2012, Grand Wailea, Maui, HI, USA, pp. 693–701. IEEE Computer Society (2012). DOI
10.1109/HICSS.2012.42. URL https://doi.org/10.1109/HICSS.2012.42

15. Lincke, J., Rein, P., Ramson, S., Hirschfeld, R., Taeumel, M., Felgentreff, T.: Designing a
live development experience for web-components. In: L. Church, R.P. Gabriel, R. Hirschfeld,
H. Masuhara (eds.) Proceedings of the 3rd ACM SIGPLAN International Workshop on Pro-
gramming Experience, PX/17.2, Vancouver, BC, Canada, October 23-27, 2017, pp. 28–35.
ACM (2017). URL https://dl.acm.org/citation.cfm?id=3167109

16. Maloney, J., Resnick, M., Rusk, N., Silverman, B., Eastmond, E.: The scratch programming
language and environment. ACM Transactions on Computing Education (TOCE) 10(4), 1–15
(2010)

17. Niephaus, F., Felgentreff, T., Pape, T., Hirschfeld, R., Taeumel, M.: Live multi-language devel-
opment and runtime environments. The Art, Science, and Engineering of Programming 2(3)
(2018). DOI 10.22152/programming-journal.org/2018/2/8. URL http://dx.doi.org/10.
22152/programming-journal.org/2018/2/8

https://books.google.de/books?id=__omAAAAMAAJ
https://doi.org/10.1145/2578903.2579166
https://doi.org/10.1145/2986012.2986029
http://doi.acm.org/10.1145/263698.263754
http://doi.acm.org/10.1145/263698.263754
https://doi.org/10.1109/VLHCC.2017.8103446
https://doi.org/10.1109/VLHCC.2017.8103446
https://doi.org/10.1109/HICSS.2012.42
https://dl.acm.org/citation.cfm?id=3167109
http://dx.doi.org/10.22152/programming-journal.org/2018/2/8
http://dx.doi.org/10.22152/programming-journal.org/2018/2/8


24 Marcel Taeumel and Patrick Rein and Robert Hirschfeld

18. Niephaus, F., Rein, P., Edding, J., Hering, J., König, B., Opahle, K., Scordialo, N., Hirschfeld,
R.: Example-based live programming for everyone: Building language-agnostic tools for live
programming with lsp and graalvm. In: Proceedings of the 2020 ACMSIGPLAN International
Symposium on New Ideas, New Paradigms, and Reflections on Programming and Software,
Onward! 2020, p. 1–17. Association for Computing Machinery, New York, NY, USA (2020).
DOI 10.1145/3426428.3426919. URL https://doi.org/10.1145/3426428.3426919

19. Rauch, D., Rein, P., Ramson, S., Lincke, J., Hirschfeld, R.: Babylonian-style programming -
design and implementation of an integration of live examples into general-purpose source code.
Programming Journal 3(3), 9 (2019). DOI 10.22152/programming-journal.org/2019/3/9. URL
https://doi.org/10.22152/programming-journal.org/2019/3/9

20. Rein, P., Lincke, J., Ramson, S., Mattis, T., Niephaus, F., Hirschfeld, R.: Implementing baby-
lonian/s by putting examples into contexts: Tracing instrumentation for example-based live
programming as a use case for context-oriented programming. In: Proceedings of the Work-
shop on Context-oriented Programming, pp. 17–23 (2019)

21. Rein, P., Ramson, S., Lincke, J., Hirschfeld, R., Pape, T.: Exploratory and live, programming
and coding - A literature study comparing perspectives on liveness. Art Sci. Eng. Program.
3(1), 1 (2019). DOI 10.22152/programming-journal.org/2019/3/1. URL https://doi.org/
10.22152/programming-journal.org/2019/3/1

22. Sheil, B.: Power tools for programmers. Datamation Magazine (1983)
23. Steinert, B., Cassou, D., Hirschfeld, R.: Coexist: overcoming aversion to change. In: A. Warth

(ed.) Proceedings of the 8th Symposium on Dynamic Languages, DLS ’12, Tucson, AZ,
USA, October 22, 2012, pp. 107–118. ACM (2012). DOI 10.1145/2384577.2384591. URL
https://doi.org/10.1145/2384577.2384591

24. Taeumel, M.: Data-driven tool construction in exploratory programming environments. Ph.D.
thesis, University of Potsdam, Digital Engineering Faculty, Hasso Plattner Institute (2020).
DOI 10.25932/publishup-44428. URL https://doi.org/10.25932/publishup-44428

25. Taeumel,M., Perscheid,M., Steinert, B., Lincke, J., Hirschfeld, R.: Interleaving ofmodification
and use in data-driven tool development. In: Proceedings of the 2014 ACM International
Symposium on New Ideas, New Paradigms, and Reflections on Programming & Software,
Onward! 2014, pp. 185–200. ACM, New York, NY, USA (2014). DOI 10.1145/2661136.
2661150. URL http://doi.acm.org/10.1145/2661136.2661150

26. Taeumel, M., Steinert, B., Hirschfeld, R.: The VIVIDE programming environment: connecting
run-time informationwith programmers’ systemknowledge. In:G.T. Leavens, J. Edwards (eds.)
ACM Symposium on New Ideas in Programming and Reflections on Software, Onward! 2012,
part of SPLASH ’12, Tucson, AZ, USA, October 21-26, 2012, pp. 117–126. ACM (2012).
DOI 10.1145/2384592.2384604. URL https://doi.org/10.1145/2384592.2384604

27. Trenouth, J.: A survey of exploratory software development. The Computer Journal 34(2),
153–163 (1991). DOI 10.1093/comjnl/34.2.153

28. Ungar, D., Smith, R.: Self. In: Proceedings of the Conference on History of Programming
Languages (HOPL) 2007, HOPL III, pp. 9 – 1. ACM, New York, NY, USA (2007). DOI
10.1145/1238844.1238853. URL http://doi.acm.org/10.1145/1238844.1238853

29. Wegner, P.: Concepts and paradigms of object-oriented programming. OOPS Messenger 1(1),
7–87 (1990). DOI 10.1145/382192.383004. URL https://doi.org/10.1145/382192.
383004

https://doi.org/10.1145/3426428.3426919
https://doi.org/10.22152/programming-journal.org/2019/3/9
https://doi.org/10.22152/programming-journal.org/2019/3/1
https://doi.org/10.22152/programming-journal.org/2019/3/1
https://doi.org/10.1145/2384577.2384591
https://doi.org/10.25932/publishup-44428
http://doi.acm.org/10.1145/2661136.2661150
https://doi.org/10.1145/2384592.2384604
http://doi.acm.org/10.1145/1238844.1238853
https://doi.org/10.1145/382192.383004
https://doi.org/10.1145/382192.383004

	Toward Patterns of Exploratory Programming Practice
	Marcel Taeumel and Patrick Rein and Robert Hirschfeld
	Introduction
	From Experience to Pattern Form
	Our Programming Experiences
	A Purely Object-oriented Programming System
	Pattern Audience
	Pattern Form

	Patterns to Enable Exploration
	Tangible Names

	Intent
	Motivation
	Forces to Resolve
	(Toward a) Solution
	Consequences
	Notes on Squeak/Smalltalk
	Tangible Pixels

	Intent
	Motivation
	Forces to Resolve
	(Toward a) Solution
	Consequences
	Notes on Squeak/Smalltalk
	Patterns to Control Exploration
	Configurable Constraints

	Intent
	Motivation
	Forces to Resolve
	(Toward a) Solution
	Consequences
	Notes on Squeak/Smalltalk
	Reliable Recovery

	Intent
	Motivation
	Forces to Resolve
	(Toward a) Solution
	Consequences
	Notes on Squeak/Smalltalk
	Discussion and Future Work
	Conclusion
	References
	References



