
Making Examples Tangible:
Tool Building for Program Comprehension

Marcel Taeumel and Robert Hirschfeld1

Abstract Best practices in design thinking suggest creating and working with tan-
gible prototypes. In software engineering, programmers interact with source code
more than with customers. Their intent is to understand the effects of abstract source
code on programs in execution. Existing tools for program exploration, however,
are tailored to general programming language concepts instead of domain-specific
characteristics and programmer’s system knowledge. In this chapter, we establish
the need for adapting programming tools in use when !"#$%"&$!%, #$'($!%, and)*+,
+')&$!% examples to increase tangibility, that is, clarity of a concept or idea based on
what can be experienced on screen. We present our Vivide tool-building environ-
ment, which is a data-driven, scriptable approach to constructing graphical tools
with low effort. By exploring common programming scenarios, we conclude that
tool building does not have to be a detached, effortful activity but can be accom-
plished by the same programmers who detect deficiencies during their programming
tasks. Then exemplary information about software systems can become tangible.

1 Introduction
Best practices in design thinking include -.*&*&/-$!%, which helps verify as-

sumptions and gain a better understanding of the often abstract and unclear problem
and solution space. Such prototyping activities will typically produce &"!%$0+'1".&$,
2")&341This means that designers work with real-world materials such as paper, glue,
pencils, whiteboards, and index cards. Externalizing thoughts and ideas in simple
but concrete things can foster team communication or enable first user testing. The
quality of prototypes can range from low-end to high-end while retaining their '5,
'6-+"./ nature: It’s not about experiencing the final product but about holding in
your hands a low-cost, incomplete, yet tangible analogy.

When the product is going to be a piece of software, prototyping can support
programmers and customers to talk about requirements in a shared language. Typi-
cal tangible artifacts include user stories [1] on index cards, bricolages of graphical
user interfaces [2], or descriptive personas [3] on whiteboards.

1 Software Architecture Group
Hasso Plattner Institute, University of Potsdam, Germany
Email: firstname.lastname@hpi.de

In Hasso Plattner, Christoph Meinel, and Larry Leifer (eds.)
Design Thinking Research: Taking Breakthrough Innovation Home (pages 161-182)
Springer 2016 (doi:10.1007/978-3-319-40382-3_11)

2

Despite the many social aspects involved in software engineering, most of the
time programmers have to focus on &"+7$!%1&*13*8.)'1)* 9' instead of customers.
Among all information related to software systems, only the source code is always
up-to-date because it describes the system’s actual behavior. Every programming
activity includes reading and modifying source code. There is in fact an overwhelm-
ing amount of information available in large systems. Not only the numerous lines
of source code but also related artifacts, such as program execution traces and ex-
ternal documentation, can support understanding. Programmers continuously ask
questions about system parts while fixing bugs or adding features. The helpful an-
swers to these questions represent &"!%$0+'1'5"6-+'3 of information needed to ac-
complish programming tasks.

In programming-the notion of tangibility does not address primarily a physical
representation but an aspect of cognition. Examples representing concepts, mecha-
nisms, or intents should be “capable of being precisely identified or realized by the
mind”2 to be tangible. In a given task, programmers have to understand the particu-
lar mapping between the -.*0+'619*6"$! and the 3*8.)'1)*9' as well as between
the source code and the software system in '5')8&$*! . General questions include:
“How is domain knowledge represented in source code?” and “How are the rather
abstract descriptions from the source code put into action during program execu-
tion?” as depicted in Figure 1.1.

Fig. 1.1. Programmers write source code to make applications fit customer specifications. Large
software systems pose challenges in uncovering the mapping between domain and code as well as
code and running applications.

To acquire this understanding, programmers use &**+3 for)*++')&$!%, !"#$%"&$!%,

and #$'($!% source code and other related software artifacts. These tools are called
browsers, editors, debuggers, or explorers. Once created without anticipating spe-
cific domains, these tools provide *!+/1%'!'.$)138--*.& for the underlying program-
ming language constructs. For example, the language Smalltalk knows packages,

2 Definition of “tangible” from http://merriam-webster.com, accessed on Dec 3, 2015

http://merriam-webster.com/

3

classes, categories, and methods. Tools support finding those artifacts and navi-
gating their relationships. There are common strategies to approach a larger system
such as “top-down” where programmers begin with the most abstract or coarse-
grained structure and then dive into the details [4].

However, program comprehension is a creative activity influenced by human
factors and domain-specific characteristics. There is typically no single strategy that
works equally well for all programmers or in all known domains. On the one hand,
people vary in terms of existing knowledge, cognitive capabilities, mood and moti-
vational triggers [5], or even vision. On the other hand, domains carry specific terms
and rules that have to be considered when using standard tools. For example, to
answer “Why doesn’t this Tetromino3 rotate clockwise when the arrow-right key is
pressed?” requires mapping from specific terms to generic actions, which the tools
dictate in this case as “Add breakpoint”, “Browse declaration”, and “Open docu-
mentation”.

By accommodating personal preferences and domain-specific characteristics,
programmers are expected to find tangible examples more efficiently. Many tools
offer a 6'"!3 1*21)*!2$%8."&$*! by switching color schemes, keyboard shortcuts,
window layouts, content filters, or integration with other tools. This possibility can
reduce the number of user interactions and the chance to make mistakes due to cog-
nitive overload or slip ups [6]. Hence, it can save time. As tools being software
systems themselves, programmers have the skills to approach any task from the best
possible angle.

However, there are two serious challenges that affect using these skills: (1) Not
many programmers reflect regularly about their working habits yet come up with
ideas for improvement and (2) simple tool customization is quite limited, extended
customization typically not worth the usually high effort. At the end of the day,
current habits remain unchanged. Programmers keep on using generic tools for a
specific information space. This habit impedes navigating, viewing, and collecting
software artifacts and hence finding the tangible examples that quickly answer pro-
gram comprehension questions.

We think that programming languages and programming environments influence
the way programmers think about tooling and the possibilities for improving their
workings. In this chapter, we describe several existing means and triggers that foster
the creative nature of program comprehension to gather the tangible examples more
efficiently to answer the questions that arise in programming tasks. We emphasize
the benefits of having a self-sustaining, reflective environment with access to the
tool’s underlying source code. We present our tool building environment, called

3 A “Tetromino” is the block in Tetris games. In such games the player has to arrange falling pieces
of varying shapes to fill rows to gather points.

4

Vivide.4 It is implemented in Squeak/Smalltalk5 and employs a data-driven perspec-
tive on programming tools. It supports a scriptable way to create graphical tools for
programming with low effort.

In section 2, we give background information and motivate the need for employ-
ing the best practices of self-sustaining programming environments such as
Squeak/Smalltalk. We present several examples of deficiencies in generic program-
ming tools in section 3, which reveal their deficiencies when applied to domain-
specific programming tasks. We explain and apply our Vivide programming and
tool building environment in section 4. Finally, we conclude our thoughts in sec-
tion 5.

2 Learn about Your Environment’s Possibilities
In this section, we establish the need for learning and applying the concepts that

particular programming languages and environments provide. We argue that this is
a requirement for efficient reflection about personal working habits and the adapta-
tion of programming tools in use.

2.1 Being Aware of Different Concepts
Creativity draws from existing knowledge and previous experiences. Program-

mers can be creative when developing a program comprehension strategy, espe-
cially if they know and understand their surroundings, that is their programming
languages, tools, and environments used. Programming tools are also described
with source code, just like the application that has to be created for a customer.
Hence, there is the chance that programmers can understand how tools work and
how they can be modified to better support the circumstances. Unlike many users
of software systems, programmers train particular skills that allow them to under-
stand the building blocks of programs and their algorithmic, logic nature. Unfortu-
nately, there are also many programmers who treat programming tools as “black
boxes” and hence remain simply users. They are, however, unwilling to dig into
internals and improve the modus operandi.

The tools’ sources have to be available [7]. The curiosity of a programmer is not
worth a dime, if there is no access to a human-readable description of the program.
Source code gets translated into byte code to be interpreted by a virtual machine or
compiled into machine code to be executed on the actual computer hardware. Such
target representations are hardly readable by programmers. The preservation of the
source code is required for maintenance. Having originated in a commercial con-
text, many programming tools (or environments, respectively) such as Eclipse and
Visual Studio do not offer sources. There are, however, full-source environments

4 The Vivide environment: http://www.github.com/hpi-swa/vivide, accessed on Dec 3, 2015
5 The Squeak/Smalltalk programming system: http://www.squeak.org, accessed on Dec 3, 2015

http://www.github.com/hpi-swa/vivide
http://www.squeak.org/

5

such as Squeak/Smalltalk where applications and tools are open, readable, and ready
to be modified.

Whenever programmers learn new languages or tools, they build on existing
knowledge and try to apply familiar concepts. This works quite well because many
new ideas originate from previous experiences and retain best practices. For $6-'.,
"&$#' programming languages, this might be the for-loop or if-else-conditional ex-
pression. For programming tools, this usually includes having text editors, copying
code via the keyboard shortcut [Ctrl]+[C] and pasting contents via [Ctrl]+[V], or
setting breakpoints and invoking a debugger. However, programmers have to be
open for new ideas. Especially when switching from a familiar language or envi-
ronment to an unfamiliar one. That other environment might be used in familiar
ways but its power can only unfold once its unique concepts become clear. For a
brief example, in Squeak/Smalltalk, programmers can modify running applications
by easily exchanging portions of code. However, it is also possible to kill and restart
applications over and over again after every little modification. If programmers fail
to learn and apply the concepts, patterns, and idioms, they cannot improve their
working habits and hence only work inefficiently in the given environment.

2.2 Tool Mechanics
In this report, we focus on %."-:$)"+1&**+312*.1-.*%."66$!%. These are tools that

have windows, buttons, lists, text fields, or other kinds of interactive widgets. We
think that programmers can benefit from graphics-based interfaces in terms of in-
creased information density and convenient input methods such as mouse and touch.
Text-based interfaces, for example command lines, are still popular in several com-
munities and maybe one indication for inconvenient designs in the graphical world.
However, this is precisely where programmers can take the opportunity to tailor
their tools as needed. This can work if the mechanics of the underlying tool-building
framework are comprehensive and easy to apply.

There are many ways to model the structure of programming tools. We think that
it is useful to distinguish between the data that is accessed and the visuals that are
produced as depicted in Figure 2.2.1. For tool builders, a ;8'./1+"!%8"%'1is used to
access the data. For tool users, a -.'3'!&"&$*!1+"!%8"%' has to be learned to make
sense of the visuals. Usually, there is also a 6"--$!%1+"!%8"%' because many soft-
ware artifacts do not have an inherent graphical representation and hence have to be
mapped to the graphical properties of standard widgets such as scrollable lists or
text boxes.

<.'3'!&"&$*!1+"!%8"%'3 encompass interactive, graphical widgets. For example,
standard tools offer buttons, lists, trees, or tables. Sometimes they have maps or
charts to visualize larger data sets and embed them into context in a meaningful
way. This typically two-dimensional output is accompanied by mouse, keyboard,
or touch input. There is usually a high degree of reuse of well-known concepts in
new tools to support learning and foster best practices. For example, many tools

6

have overlapping windows, tool bars, context/pop-up menus, save dialogs, or key-
board shortcuts. Depending on the domain, there might also be several unique widg-
ets such as sheet editors in music composition tools [8].

=8'./1+"!%8"%'3 support accessing and preparing data for widgets. They are
programming languages with a specific focus. For example, if the information is
stored in a relational database, SQL can be used to access those tables and to per-
form filter and aggregation operations. Given the concept of tables and rows, the
expression “SELECT name FROM customers WHERE age > 60” reads the table
“customers” and selects the rows with a certain age value to finally return the
“name” column. One might easily have a textual or graphical representation in mind
when querying data but such languages are independent of presentation. Tools can
present the same information in different ways.

>"--$!%1+"!%8"%'3 are required because the data providers and the interactive
widgets usually do not speak a shared language, meaning that there is no inherent
graphical representation for many software artifacts. Of course, it is easy to map
information to textual representations because many data providers, internally, talk
text-only. In information technology, textual representation of information is very
important and is standardized, for example in the Unicode standard. This standard-
ization is necessary for the sake of sharing, persistence, and long-lasting compre-
hension. However, in programmers’ minds, some software artifacts have a more
vivid appearance than others. Computer graphics employs lines, shapes, colors, or
animation to make digital information almost tangible on screen. List widgets, for
example, may benefit from “icons” or “color” but the data is only text. Here, map-
ping languages can be used to “materialize” concepts, that is, for example, mapping
the string “red” to actual color information to be displayed on screen.

Fig. 2.2.1. Graphical tools for programming query system data to retrieve software artifacts such
as source code, external documentation, and run-time traces. A subset of the artifacts’ information
is extracted and mapped to what interactive widgets support such as textual labels and color prop-
erties. The tool’s source code is basically an adapter between databases and widgets.

7

2.3 Live Programming Environments
A central issue in program comprehension is how the rather abstract source code

is put into action when it is executed on the computer. That means, understanding
the correspondence between observable program output and its sources is para-
mount. To achieve this understanding, programmers execute smaller portions of a
program called &'3&3 or pause program execution at certain points referring to (con-
ditional) locations in source code, called 0.'"7-*$!&3. Assumptions can be verified
by exploring a program’s run-time state or the result of a test run. Having such a
unit of observation, small changes to the source code can also be used to check
behavioral variations.

?9$&,)*6-$+' ,.8! cycles can be minimized in live programming environments
such as Squeak/Smalltalk. Programmers can evaluate any piece of source code in a
text field within a particular context. There is always the global context, which
means that 3 + 4 will evaluate to 7 and Morph new openInHand will create a blue
rectangle attached to the mouse cursor as depicted in Figure 2.3.1. More specific
contexts occur, for example, if an algorithm is in the middle of execution and it is
paused by breakpoint. In that context, the keyword self evaluates to the object hold-
ing the shared state the algorithm is working with. For graphical objects, the expres-
sion self color will then evaluate to the object’s current color. Although traditional
environments such as Java/Eclipse6 or C#/VisualStudio7 do provide context when
debugging, Smalltalk environments provide many more opportunities for program-
mers to work with run-time information. Setting breakpoints is then not always the
first choice. Depending on the scenario, it can actually feel like “debugging mode
is the only mode”8, which is not feasible when writing, for example, a Java program.

Moreover, the Smalltalk programming language is also quite convenient to use
as a query language for tool customization. The information is accessed in terms of
Smalltalk objects such as morphs or colors as mentioned above. Program execution
is structured with objects for processes, classes, methods, class instances, and
method activations. Smalltalk can be used to query this information and prepare it
for tools.

Smalltalk can be used as a mapping language, too. In Squeak, there is the inter-
active, graphical system called Morphic. All graphical objects are called 6*.-: 3,
which are basically rectangular areas that support composition in terms of holding
sub-morphs. Although the boundaries blend, both the Smalltalk language and the
Morphic system are important for mapping data to graphical representations. Pro-
grammers can describe custom morphs to display any kind of data. The Squeak

6 The Eclipse programming environment, http://www.eclipse.org, accessed on Dec 3, 2015
7 Microsoft VisualStudio programming environment, http://www.visualstudio.com,

accessed on Dec 3, 2015
8 “Debug Mode is the Only Mode”, blog post from Gilad Brancha, http://gbracha.blog-
spot.de/2012/11/debug-mode-is-only-mode.html, accessed on Dec 3, 2015

http://www.eclipse.org/
http://www.visualstudio.com/
http://gbracha.blogspot.de/2012/11/debug-mode-is-only-mode.html
http://gbracha.blogspot.de/2012/11/debug-mode-is-only-mode.html

8

environment provides tools that support code browsing, writing, and running activ-
ities with the help of windows, buttons, text fields, and lists. Every software artifact
is an object, every graphical thing is a morph. This is a quite simple yet powerful
concept that programmers can employ to accommodate any programming chal-
lenge.

The conceptual distance [9] between 6*.-:3 and interactive ($9%'&3@ such as
buttons, is rather long., There are &**+108$+9$!%12."6'(*.73 that build on top of
Morphic to minimize the amount of source code that has to be written for tools. We
will explore our approach Vivide [10], which is a tool building environment with a
data-centric focus, in the remainder of this chapter.

3 Reflect on Your Working Habits
In this section, we describe some prominent, recurrent scenarios where standard

tools, which are aligned with programming language concepts, impede the discov-
erability of tangible examples and hence programming tasks. This should raise pro-
grammers’ awareness to discover tool building as an opportunity to improve current
program comprehension and modification strategies.

3.1 About Finding Tangible Examples
Programmers search for answers to program comprehension questions by navi-

gating, viewing, and collecting software artifacts. Often, the means to navigate,
view, or collect presents a challenge. Therefore, programmers should consider im-
proving the situation by adapting the tools involved. A situation becomes challeng-
ing whenever programmers have to remember much information, interact with
many tools back and forth in a loop, or continually ignore the same redundant or
unimportant information over and over again. The screen real estate has to be opti-
mized and necessary user input minimized. Finally, all important information has
to be presented on screen so that the programmer can think about the current task
with minimal cognitive overhead and come up with a solution involving where to
modify the application to fix that bug or add that feature.

Programming tools are the means to navigate, view, collect, and even modify
software artifacts. Primarily, programmers have to understand existing source code,
modify existing source code, and write new source code. There is also other infor-

Fig. 2.3.1. In Squeak/Smalltalk code
can be evaluated in any text field.
Here, two workspaces illustrate this
concept. The blue rectangle is a
morph and the result of the execu-
tion of the lower code snippet.

Marcel

Marcel

Marcel

9

mation that materializes in software artifacts. It originates from the operating sys-
tem, programming language, execution environment, and other tools. Such artifacts
are called files, classes, methods, tickets, emails, traces, processes and so on. They
are typically related in one way or another. For example, emails can contain text
referring to pieces of source code or traces can contain links to methods from pro-
gram execution. Such relationships may not be explicit but have to be derived. Tools
can help navigate relationships automatically to combine artifacts of different kinds
with each other. For example, Mylyn [11] achieves this for source code and tasks,
represented via tickets in an issue tracker. The tools’ interactive widgets can help to
display the information in a way that is helpful for the programmer to reveal news
or recall what was already known and again of importance for the current task.

There are 2")&3 and there is $!2*.6"&$*! derived from those facts based on .8+'3.
For example, the birthdate of a person is a fact and its current age a derived infor-
mation. In this respect, the source code comprises many facts. When running code,
more data can be derived and interesting properties can be observed. Programmers
use tools to learn about facts and also explore derived information. Some rules,
however, are implicit and have to be inferred if necessary. For example, the way
debuggers acquire access to the current program state is typically hidden in the in-
ternals of the debuggers’ source code.

Programming environments support intra-tool communication. If the operating
system is the programmers’ environment, then files are typically used to store
source code and exchange related artifacts between editors, compilers, or debug-
gers. There are programming environments that work on top of the operating system
such as Emacs, Eclipse, or VisualStudio. Their means of tool communication enrich
the file concept with, for example, text buffers or object-oriented structures. This
simplifies the programming model for the tool builder. In Squeak/Smalltalk, pro-
grammers are almost completely shielded from the file system and only work in
terms of objects, meaning classes, instances, methods, or method activations. While
there is still support for text, object-orientation fosters abstract yet domain-specific
thinking and also the creation of interactive, graphical programming tools. For ex-
ample, if the project is about building an address book, then the objects might in-
clude persons or addresses and the tools can reflect their relationships with appro-
priate views and provide appropriate navigation links. A specialized object explorer,
for example, might resemble a real-world address book to support program com-
prehension tasks.

The information space is changing. New source code gets written, and depre-
cated code gets removed. Yesterday’s fact may have become derived from another
fact based on some rules. Source code evolves in the way that it gets partially re-
written, called “refactoring.” This occurs many times as programmers learn more
about the respective problem domain and make changes accordingly. Such addi-
tional knowledge about the system or domain is also exchanged via emails or tick-
ets. All kinds of software artifacts are constantly changing, which means that the
tools will also have to change to accommodate domain-specific characteristics and
personal traits.

10

3.2 Search for Examples and Navigate the Results
In most environments there is a text-based search tool that supports programmers

in finding software artifacts by name or (text-based) contents by typing in a search
term. Unfortunately, there is usually only a fraction of all information accessible,
which is the source code and maybe some external documentation. However, this
serves as a valid starting point for many program comprehension or modification
tasks [12]. Programmers ask questions using terms from the problem domain and
expect software artifacts to be named or described likewise in the code or com-
ments. Having such starting points, exploration can continue with, for example, set-
ting breakpoints and running the application.

An important tool for understanding the correspondence between source code
and run-time is called “object explorer.” In a class-based system such as Squeak,
objects are instances of classes that have instance variables for object composition.
This composite structure can be navigated because object explorers expose all such
instance variables by name and with a textual summary of the particular referred to
object, as depicted in Figure 3.2.1. Having this, the programming language dictates
the functionality of this tool. Challenges arise when 9*6"$! ,$!9'-'!9'!& relation-
ships increase the tool interaction effort or when related artifacts have to be explored
in separate tools. For example, morphs in Squeak encapsulate several properties,
such as related to layouting, in an “extension” structure. Programmers always have
to navigate this extension to find out about the current layout. When comparing the
state of two different morphs, it is necessary to interact back and forth with two
object explorers. However, simple integration points, for example the name of the
instance variable, could be used to create a)*60$!'9 object explorer.

Refactoring tools require a set of source code artifacts to operate. For example,

those tools support renaming or restructuring methods and update all related parts
of the code. In dynamically typed programming languages such as Smalltalk, refac-
toring tasks benefit from additional information, such as run-time types and user-
defined filters, to prevent inadvertent code changes. However, embedding a refac-
toring activity into an exploration activity can be challenging if tool integration is
missing. All the different kinds of information involve handling separate tools and

Fig. 3.2.1. The object explorer in
Squeak. Exploring layout properties
of a morph is challenging because
morphs hide that state in an exten-
sion object and in an additional dic-
tionary structure. In this example,
the information is at the third level in
the tree structure.

11

hence increase the cognitive effort, and also the risk of making mistakes. Some-
times, a rule that describes integration points can be simple like “Only consider the
source code that I’ve modified during the last two hours.” Such a rule should be
manifested in tools to optimize the current program comprehension strategy.

3.3 View Information about Software Artifacts
Programmers perceive software artifacts by viewing a subset of the artifacts’ in-

formation on screen. Mainly, there are inherent textual descriptions such as names
or numerical values. However, there is usually more information about an artifact
available than there is screen space and programmers only want to see the relevant
details. Hence, filtering is a common way to customize the tools’ widgets. Many
tools anticipate this action directly in the user interface without having to modify
their source code.

The)*!3*+' , in Squeak called A."!3).$-&, is a common tool used by program-
mers for debugging. The practice is sometimes referred to as -.$!&2,9'08%%$!% be-
cause standard libraries for the C programming language offer the function printf
to write text to the standard console output. In Squeak, this corresponds to Tran-
script show: someObject name, which, for example, prints the object’s name. Pro-
grammers use the Transcript to trace information in the program without having to
pause its execution. They have to map data or object structures to text but they can
access anything from the particular context. Challenges arise when programmers
fail to extract the relevant information and thus have to re-execute the presumably
deterministic part of the program. As the output is typically in a text format, there
is no other way to explore the underlying software artifacts with this strategy. See
Figure 3.3.1 for an example.

Fig. 3.3.1. “printf debugging” in Squeak. If programmers do not extract helpful information, they
have to modify debugging statements and re-execute the program.

There are many tools that require a textual representation of objects for on-screen
display such as the object explorer in Figure 3.2.1. When there is a class hierarchy

12

with a common base class—see Object in Squeak or Java—programmers can over-
write #printString (resp. toString()) in a subclass to accommodate domain-spe-
cific characteristics. The default textual representation of objects in Squeak is con-
structed with the class name and the identity hash like “aPerson(1234),” which is
rather abstract. In fact, this example is not tangible at all. A slightly better mapping
could be “John, Doe, 32.” However, the underlying concept of persons would be
rather implicit and only discoverable if the programmer associates that information
with the concepts of !"6' and "%' and eventually with a -'.3*! . A very elaborate
version can reveal all details: “aPerson (forename: John, surname: Doe, age: 32).”
However, this representation not scale when printed on the console among much
other information. It is also independent from any particular programming task or
personal preference or existing knowledge. There is a need to adapt the textual rep-
resentation ad-hoc according to the current situation.

Many programming tools have list-like widgets. Examples include class brows-
ers, search result explorers, and save dialogs. List-like widgets provide an overview
and typically some interaction to view, select, move, or drag items. Although there
is often support for filtering, lists usually lack support for shaping an item’s graph-
ical appearance, including layout properties. See Figure 3.3.2 for the same artifacts
displayed in a list, a tree, and a tree map. Note that it is not feasible to modify
#printString as described above because programmers may want to see different
information in different tools and, most importantly, according to the relevance for
the current programming task.

Fig. 3.3.2. Three views that display the same software artifacts but reveal different information.
The list (left), the tree (middle), and the tree map (right) support labels and colors. The list ignores
the hierarchical structure. The tree has much unused whitespace. The tree map has a space-filling
approach.

13

3.4 Collect Useful Pieces of Information
Programmers can take notes in files via text editors, which are part of many pro-

gramming environments. However, a textual representation of complex object
structures requires filtering and summarization, which may be too early to do with
the present system knowledge. Programmers may omit to write down important in-
formation. This practice suffers from the same problems as printf-debugging, as
described above. In Squeak, there is a text-editor-like tool called B*.73-")' , which
supports source code evaluation (Figure 2.3.1). It also supports dropping graphical
objects, which then get captured and are referenceable with a variable like
droppedMorph. These objects can be explored by evaluating the snippet droppedMorph
explore within that workspace. It can be beneficial to keep track of interesting soft-
ware artifacts and defer setting up a representation on screen until later in the course
of the programming task when concepts become clearer and examples more tangi-
ble.

Tools consist of one or more ($!9*(3 to manage their contents. Basically, win-
dows are rectangular areas that show a document or a scrollable portion of it. Tool
operations become accessible via push buttons, menu bars, and other additional
widgets, typically arranged around a central view. Finding an efficient window
manager for programming environments with graphical user interfaces has a long
history [13]. Semi-automatic window layout strategies range from overlapping
(Squeak) to tiling (Eclipse) to stacking (Web browsers) – or any combination. Man-
aging the position and extent of tool windows is still part of programmers’ frequent
activities, and is in the focus of research [14].

Fig. 3.4.1. There is much redundant information visible when comparing, for example, two meth-
ods from the same class (here: < and = from Point). This is not necessarily a problem of window
management but of the tool’s user interface design.

While windows can be used to collect and arrange information about software
artifacts on screen, their tool-driven characteristics entail much redundant and task-
independent information. A window does not correspond to a single software arti-
fact but many. Tool windows in Squeak, for example, are self-contained and display
full context information such as code browsers do for displaying)+"33 definitions
and 6'&:*9 source code. This has the disadvantage that two code browsers that

14

browse two methods from the same class will both display the same context infor-
mation. This means both will display irrelevant message names, message catego-
ries, and other classes in the same package, and class categories with similar spelling
(Figure 3.4.1). In Eclipse, tools use a tiling layout strategy and display more specific
and less redundant information in their windows such as the class outline at the side
and the dedicated text editor in the center. Tiling, however, is much more restrictive
when it comes to collecting examples because screen space is limited and quickly
exhausted if you can only arrange windows side-by-side. If you stack them, like
tabbing in web browsers, you will save screen space but also sacrifice visibility of
information completely. Programmers should be able to choose the best way to ar-
range examples on screen because this level of control can improve tangibility.

3.5 Improve the Means to Navigate, View, and Collect
Tool modification is necessary to accommodate domain-specific tasks and indi-

vidual system knowledge. A dedicated tool builder who usually creates tools with a
:$%:1+'#'+1*21-.*3-')&$#'1.'83'1 can only provide means for common tasks, which
are usually aligned to the particular programming language and execution environ-
ment. Domain-specific characteristics and personal traits cannot be known upfront.
Programmer who have concrete tasks, such as fixing bugs and adding features, are
best suited to improve working habits by adapting the tools in use themselves.

Thus, whenever navigation repeatedly requires many user interactions, the visual
display hides relevant details, or the collection of insights is challenging, program-
mers can take the chance to act as tool builders. As one would build a level editor
for a game to support the creation of game content, programmers can build custom-
ized tools to support the work on any software system.

4 Apply Data-driven Tool Building
Programmers can find tangible examples for comprehension tasks by using pro-

gramming tools for navigating, viewing, and collecting software artifacts. Such
tools are built with a query language to access and process artifacts, a mapping lan-
guage to cope with inappropriate or missing graphical representations, and a presen-
tation language to serve the user with an interactive front-end. Whenever detecting
deficiencies in tools, programmers have the skills to improve those tools ad-hoc –
even for scenarios that may be unique.

However, tool building frameworks require a high effort for &.")$!% a tool’s ob-
servable deficiency to the responsible portion of the tool’s source code. Addition-
ally, code):"!%'3 are rather verbose and tools do not 8-9"&' consistently so that
programmers have to restart and hence constantly repeat certain interactions before
proceeding with the actual programming task. Eventually, the prospective cost-ben-
efit ratio might render such a tool adaptation pointless and hence programmers keep
on using standard tools and inconvenient working habits.

15

We created a new tool building framework, called Vivide [10], that projects a
data-driven perspective on graphical tools and employs a scriptable way to modify
the tools in use with low effort. The extensible presentation language consists of
common widgets such as buttons, text boxes, and lists. Both query and mapping
language are based on Smalltalk and integrate seamlessly existing object-oriented
code. In this section, we will describe Vivide’s concepts in detail and apply them
for !"#$%"&$!%@1#$'($!%@1"!91)*++')&$!% software artifacts to increase tangibility of
the exemplary information shown on screen.

4.1 The Vivide Tool Building Environment
Vivide [10] is a programming environment that supports programmers to focus

on their domain-specific data. It projects a data-driven perspective on graphical
tools and employs scripts that express rules for transforming data and extracting
relevant information to be stored in a model. That model will be interfaced from
interactive widgets such as lists or buttons. We think that by putting the domain-
specific data (resp. software artifacts) in the foreground the notion of tools fades
into the background. Programmers are more likely to create or modify tools as an
unnoticed side-activity while navigating, viewing, and collecting relevant infor-
mation.

Fig. 4.1.1. Traditional tools (left) provide a rather complex, indirect correspondence between user
interface and program entities; Vivide tools (right) provide a direct correspondence. Rectangular
portions of the user interface are called -"!'3 . Programmers have to think about tools being only
data-exchanging panes.

The Vivide environment provides a direct correspondence between all graphical
parts of the user interface and the internal tool logic as depicted in Figure 4.1.1.
Vivide is implemented in Squeak/Smalltalk and builds on top of the Morphic frame-
work, which supports direct manipulation of all graphical objects. Every morph has
a meta-menu, called :"+* 4 It can be invoked with a dedicated user interaction such
as a click on the middle mouse button, that represents a graphical meta-interface to
perform inspection and modification tasks. Vivide makes use of the halo concept to
provide access to the underlying tool mechanics as depicted in Figure 4.1.2. Now,

16

programmers can easily find responsible data transformation scripts starting with a
visual impression and express modifications in the script source code. Due to this
simple yet powerful abstraction, the Vivide framework can update all running tools
consistently when scripts change. The programmer can continue the programming
task without having to repeat previous tool interactions.

Fig. 4.1.2. Every graphical part (pane) of tools in Vivide has a halo that provides access to data-
flow properties and the underlying script via floating buttons.

Thus, Vivide is not only a programming environment but also a tool building
framework. Building tools means composing widgets, like in a GUI builder, and
writing script code. Script code describes rules for transforming software artifacts
and extracting relevant information to be used by widgets. For example, a script that
transforms classes into methods and extracts the selector from methods to be dis-
played in a list can be created with only a few lines of code as depicted in Fig-
ure 4.1.3.

There is also a ($C".9 involved that tries to detect 1:n, n:1, or n:m transfor-
mations to further reduce programming effort. In general, programmers have full
control over the input and output of objects in a script. In Smalltalk terms, a script
is a collection of 0+*)73 in the form [:in :out |], and the Vivide framework will
initiate block evaluation with actual objects. The wizard expands [:a | a + 1] to
[:in :out | out addAll: (in collect: [:a | a + 1])] and other expressions to
similar constructs.

We think that programmers who build tools with Vivide will benefit from time-
related advantages compared to traditional tool building approaches. This may have
an impact on the cost-value ratio of tools and thus also on the whole tool building
community.

17

Fig. 4.1.3. In Vivide, only a few lines of Smalltalk code (left) are needed to describe an interactive
tool (right). Here the tool operates on the Morph class, transforms it into methods, and displays
the methods’ selectors in a list that supports drag-and-drop for continuing the exploration.

4.2 Support Navigation with Adapted Tree Structure
Scripts in Vivide support describing tree structures to be used by widgets. Each

script is a set of object transformation and property extraction rules. With this, pro-
grammers can transform any collection of input objects into any other collection of
output objects. For example, programmers can navigate '5$3&$!%1.'+"&$*!3:$-3 or
perform a computation to 9'.$#'1!'(1$!2*.6"&$*! . The empty script is [:in :out |
out addAll: in], which just forwards all objects from the input buffer to the output
buffer. After transforming objects, programmers can describe properties of interest
such as #text as extracted in the example above. Alternating transformation and
extraction means describing multiple levels of a tree structure. While plain list widg-
ets might not take notice of such a tree structure, tree widgets will do as depicted in
Figure 4.2.1. Programmers can adapt tree structures to simplify navigation and
make efficient use of screen real estate. An example of this is presented in Fig-
ure 4.2.2.

Fig. 4.2.1. Alternating transformation and extraction describes different levels (a and b) in the tree
structure. Note that Smalltalk code can be used in all scripts. The wizard will expand all four blocks
into the form [:in :out | ...].

Scripts can process multiple data sources as a means of combination and integra-
tion. Multiple sources, meaning collections of objects, can be combined as the D".,
&'3$"!1-.*98)&4 The scripts still operate on collections of objects but these then con-
tain1! ,&8-+'3, where n depends on the number of data sources. For example, having
two sources (1, 2) and (a, b, c), the script then handles ((1, a), (1, b), (1, c), (2, a),

{ [:class | class methods]
 -> { #view -> ListView }.
 [:method | { #text -> method selector }].
} openScriptWith: {Morph}.

{ [:a | a + 5].
 [:a | #text -> a].
 [:b | b even ifTrue: [b / 2]].
 [:b | #text -> b]
} openScriptWith: #(1 2 3 4 5 6).

18

(2, b), (2, c)). Programmers have to know about this in their scripts. The aforemen-
tioned script wizard helps combine multiple data sources.

Programmers can then use Vivide scripts to describe arbitrary navigation paths
via tree structures. A single tool can shorten navigation paths by only exploiting the
relationships of interest as depicted in Figure 4.2.2.

Fig. 4.2.2. On the left there is a default object explorer showing details about the window of a code
browser. On the right the same object structure is simplified by only navigating the composite GUI
structure (sub-morphs) while exposing layout properties. The same object, a text input field, is
selected in both windows to emphasize the efficient use of available screen space.

4.3 Support Views with Named Properties
Scripts can be used to map any information of a software artifact to something

that widgets can use. For example, programmers can derive color information, setup
labels or tooltips, and so on. Such -.*-'.&/1'5&.")&$*!3 have the form of an array
with associations as depicted in Figure 4.3.1. Besides visual mappings, any *0E')&,
3-')2) information can be provided for widgets given a name. Common properties
include #text, #icon, #balloonText, and #color. The widgets decide about those
means of configuration and can, theoretically, adapt their whole behavior. It is not
part of the concept of Vivide to prescribe the use of such properties. The tree map
in Figure 4.3.1 is able to use text, weight, color, and elevation.

Scripts also have a set of *0E')&,$!9'-'!9'!& properties. For example, Vivide
stores a flag #isProperty to distinguish between object transformation and property
extraction scripts. Widgets also get the chance to configure themselves according
to script-properties. The tree map in Figure 4.3.1 reads #layout and #sort to adapt
its general layout strategy and sort order.

Programmers are in control of the presentation of software artifacts. They can
choose between a set of views such as lists, tables, trees, tree maps, and other charts.
Furthermore, they can tweak those views at the script level. Any change in script
code will immediately update the corresponding views in the programming envi-
ronment. Such short feedback loops support programmers in exploring information
and finding examples. Those examples can become tangible if programmers can
find an appropriate way to show them on the screen – tailored to the domain and
personal preferences.

19

Fig. 4.3.1. A rather complex example of a script (background) that extracts properties for a tree
map (foreground). Object-specific properties include text, weight, color, and elevation. View-spe-
cific properties include layout strategy and sort order. Left of the tree map, the tool also offers a
tree representing part of a directory structure with source code files.

4.4 Support Collection with Arbitrary Containers
Vivide supports overlapping windows for tools like Squeak does. However, Vi-

vide entails the idea that “window management” can be pluggable. Based on the
authors’ experiences, overlapping windows suffice most of the time. Common tool
windows, however, have their contents tiled or stacked as depicted in Figure 4.3.1.
Within those tiles, the layout strategy may be different. List widgets, for example,
arrange their items vertically side-by-side. In another example, tree maps can have
overlapping items when supporting elevation – or even a 3D canvas. Based on these
observations, we think that programmers should be able to decide about the layout
strategy for each level in a tool’s graphical hierarchy. The concept of rectangular
tool building blocks, called -"!'3 , in Vivide is expanded to 68+&$,-"!'1 ($9%'&3.
These widgets encapsulate multiple panes to apply any possible layout strategy. For
an example, see Figure 4.4.1. Such means of content organization are independent
of actual visualizations. Programmers can employ them as required to make soft-
ware artifacts more tangible on screen.

20

Fig. 4.4.1. Window management should be pluggable and any layout strategy applicable in any
part of the graphical hierarchy as needed. Here, the hierarchy on the right models the tools on the
left. In the hierarchy, circles denote 68+&$,-"!'1($9%'&3, squares denote -"!'3 , and rounded squares
other 6*.-:3 in the world.

Collecting objects via drag-and-drop using a pointing device (mouse or touch) is
a common practice in Vivide. Many widgets support dragging their objects. Then,
there is are generic container to collect those objects as depicted in Figure 4.4.2.
Programmers can collect pieces of source code that are otherwise scattered in the
class hierarchy and view them side-by-side. Programmers can also mix different
kinds of objects such as run-time artifacts and code artifacts. Although Vivide pro-
vides support at the level of graphical, interactive tooling, the Squeak/Smalltalk en-
vironment is the reason for run-time information being omnipresent in general.

Fig. 4.4.2. Vivide provides a generic
container to collect software arti-
facts via drag-and-drop. Each
dropped artifact is displayed in an
interactive view. Here, there is an
object explorer for a color object, a
code editor for a Point method, and
a mouse cursor about to drop a rec-
tangle morph.

21

5 Conclusion
Program comprehension benefits from tangible examples. Due to the abstract

characteristics of source code, tangibility does not refer to a physical representation
but to conceptual clarity and understanding. Regarding a concept in the source code,
its correspondence in the problem domain has to be understood as well as its effects
during program execution. Having this, finding the subset of relevant information
and presenting them in a tangible way is a matter of efficient programming tools
and programming environments. This efficiency is specific to the domain and to the
programmer’s personal preferences and existing knowledge. Traditional program-
ming tools, however, align with generic programming language concepts; specific
scenarios are not well supported. Tool adaptation seems beneficial but is typically
expensive.

We presented the Vivide programming and tool building environment, which is
a data-driven, scriptable, interactive approach to construct graphical tools for pro-
gramming. We applied Vivide in several examples to illustrate ways to improve the
means to navigate, view, and collect software artifacts. While programmers do not
have to come up with the perfect solution right from the beginning, Vivide’s direct
feedback after each tool modification fosters an iterative and explorative working
mode. Programmers can safely try out ideas and undo mistakes with ease. Even
unique scenarios can be improved, and reuse can then become of secondary interest.

References

[1] M. Cohn, User Stories Applied, Pearson Education, Inc., 2004.
[2] B. Shneiderman and C. Plaisant, Designing the User Interfaces: Strategies for

Effective Humand-Computer Interaction, Addison-Wesley, 2010.
[3] C. Courage and K. Baxter, Understanding Your Users: A practical guide to

user requirements, Elsevier, 2005.
[4] A. Von Mayrhauser and A. M. Vans, "Program Comprehension during

Software Maintenance and Evolution," F???1D*6-8&'.@1vol. 28, no. 8, pp.
44-55, 1995.

[5] M. Csikszentmihalyi, Flow: The Psychology of Optimal Experience, Harper
Perennial Modern Classics, 2008.

[6] D. A. Norman, The Design of Everyday Things, Basic Books, 2002.
[7] M. Weiser, "Source Code," F???1D*6-&8'.@1November 1987.
[8] J. Wright, D. Oppenheim, D. Jameson, D. Pazel and R. Fuhrer, "CyberBand:

A ‘Hands On’ Music Composition Program," in <.*)''9$!%31 *21 &:'1
F!&'.!"&$*!"+1D*6-8&'.1>83$)1D*!2'.'!)' , 1997.

[9] E. L. Hutchins, J. D. Hollan and D. A. Norman, "Direct Manipulation
Interfaces," G86"! ,D*6-8&'.1F!&'.")&$*!@1vol. 1, no. 4, pp. 311-338, 1985.

22

[10] M. Taeumel, M. Perscheid, B. Steinert, J. Lincke and R. Hirschfeld,
"Interleaving of Modification and Use in Data-driven Tool Development," in
<.*)''9$!%31*21&:'1HIJK1LD>1F!&'.!"&$*!"+1M/6-*3$861*!1N'(1F9'"3@1N'(1
<"."9$%63@1"!91O'2+')&$*!31*!1<.*%."66$!%1P1M*2&(".', 2014.

[11] M. Kersten and G. C. Murphy, "Using Task Context to Improve Programmer
Productivity," in <.*)''9$!%31 *21 &:'1 JK&:1 F!&'.!"&$*!"+1 M/6-*3$861 *!1
Q*8!9"&$*!31*21M*2&(".'1?!%$!''.$!%1RQM?S, 2006.

[12] J. Sillito, G. C. Murphy and K. De Volder, "Asking and Answering Questions
During a Programming Change Task," F???1 A."!3")&$*!31 *!1 M*2&(".'1
?!%$!''.$!%@1vol. 34, no. 4, pp. 434-451, 2008.

[13] B. A. Myers, "A Taxonomy of Window Manager User Interfaces," F???1
D*6-8&'.1T."-:$)31"!91L--+$)"&$*!3@1vol. 8, no. 5, pp. 65-84, 1988.

[14] D. Rӧthlisberger, O. Nierstrasz and S. Ducasse, "Autumn Leaves: Curing the
Window Plague in IDEs," in <.*)''9$!%31*21&:'1JU&:1B*.7$!%1D*!2'.'!)'1*!1
O'#'.3'1?!%$!''.$!% , 2009.

