
A Context Management Infrastructure
with Language Integration Support

Tobias Rho1 Malte Appeltauer2 Stephan Lerche1

Armin B. Cremers1 Robert Hirschfeld2
1Department of Computer Science III 2Software Architecture Group, Hasso-Plattner-Institute

University of Bonn, Germany University of Potsdam, Germany
{rho,lerche,abc}@cs.uni-bonn.de {malte.appeltauer, robert.hirschfeld}@hpi.uni-potsdam.de

Abstract
A range of context-management systems in the past have motivated
the need for development support of context-aware applications.
They typically provide APIs and query languages for context anal-
ysis. Reacting to context changes, however, is either not at all or
only to a limited extend supported by adhering to constraints of a
framework.

In this paper, we present a context-management system that
combines context reasoning with context-dependent behavior by
taking advantage of language approaches to dynamic adaptation,
such as aspect- and context-oriented programming. Our framework
is open for different levels of integration with programming lan-
guage extensions and offers a dynamic, strategy-based aggregation
of local and distributed context sources. As a first step, we imple-
mented a query library for the JCop language. We present its API
and show the implementation of an example application.

Categories and Subject Descriptors D.3.3 [Language Con-
structs and Features]: Frameworks

General Terms Infrastucture, Context-Management

Keywords Context-Awareness, Semantic Web, Query Language,
Context-oriented Programming

1. Introduction
Context-awareness is essential for a large number of today’s ap-
plications. To build flexible applications that adapt their behavior
to environmental changes, the underlying architecture must pro-
vide both the means to dynamically reconfigure the application
based on new context information as well as stability of the ap-
plications against dynamic changes of context source configura-
tions . Context-dependent reconfiguration consists of two important
features, the ability to query many heterogeneous context sources
– such as (Web) services, location sensors, contact list data, and
others – as well as actuators of a dynamic adaptation – such as
switching between different sorting algorithms. The former is ad-
dressed by context-management systems (CMS), which provide li-
braries and frameworks for context reasoning. These systems are

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
COP’11, July 25, 2011, Lancaster, UK.
Copyright c© 2011 ACM 978-1-4503-0891-5/11/07. . . $10.00

often based on service-oriented architectures (SOA) and compose
and configure services at runtime according to the current context.

The latter is also the focus of ongoing language design re-
search mainly in the domain of context-oriented [6] and aspect-
oriented programming [7]. The advantage of language-level ap-
proaches over CMS is that they do not impose restrictions to
the design and implementation, such as subordinating an applica-
tion to CMS-specific frameworks. However, they lack CMS-like
context reasoning abilities. To make use of the expressiveness of
these language approaches, it is desirable to have an integration
of context-reasoning at programming language level equivalent to
CMS capabilities. Tight language integration and static typing can
also have drawbacks concerning runtime flexibility, therefore we
present three different levels of language integration and their in-
tended usage scenarios.

In a previous work [11], we presented an initial concept for
the integration of a context-aware aspect language and an OSGi-
based context management system which adapts to an architec-
ture on the service-level. The approach used untyped Prolog pred-
icates to represent context information. In this paper, we intro-
duce our RDF-based context-management system, its logic-based
object-oriented query language and its integration with a library
for the context-oriented JCop [1] language. The intention of our
context-management system is to provide a flexible context query
and aggregation framework enabling tight programming language
integration. The chosen context model is based on the Resource De-
scription Framework (RDF), which represents contexts and their
meta-data as object-graphs. RDF follows a property-centric ap-
proach which allows for the extension of existing resource descrip-
tions rather than redefining them. Properties of a class can be de-
fined in several parts that are aggregated to form a class speci-
fication. This allows for flexible aggregation of different context
sources resulting in a combined, object-oriented model.

Section 2 presents a scenario of a context-aware mobile applica-
tion to which we refer in the following sections. Section 3 presents
our CMS, whose context query language is described in Section 4.
An overview of the JCop context query library is given in Section 5.
Section 6 discusses related work while Section 7 concludes the pa-
per.

2. Running Example
Many mobile applications provide flexible behavior depending on
context information. Consider, Zoe has a ’Getting Things Done’-
like ToDo application on her mobile device to help her prioritizing
tasks depending on the current working environment and situation.
For example, specific tasks require a computer, Internet access
or can only be accomplished at a specific location. Others need

CSLogicAJ

CMS

Context Factbase

(Prolog)
CQL

Compiler

IQuery

 Location

 Contacts

Time

IContextAggregator

Context Source
Services

RDF

 Aspect X

Comp 1

tailor

Comp 2

Type & Mode

Checking

Prolog

Generator

JCop Library

Context Query

Parser

ICompile

 (CQL AST)

generates

Query API
CSLogicAJ

Compiler

Context Aggregator

Figure 1. Overview of the Context Management System and the
Query Framework

personal communication with a colleague or are due at a certain
date. Zoe’s application contains two entries:

• "Arrange time and place for brunch on Sunday"
due: Friday, contacts: <Mum, Dad, Uncle Malte>

• "Buy milk, eggs, juice"
location: <supermarket at the corner>

For the first task, the ToDo application checks whether one of the
relevant persons is nearby (for personal communication) or online
(for instant messaging). If so, it notifies Zoe of it at the startup of her
calender application. For the second task, it rings when Zoe is close
to the supermarket. One can think of many enhancements to the
context reasoning and the according action in such application. For
instance, instead of only notifying Zoe of the presence of contact
persons, it could also, with regards to Zoe’s schedule, send a request
for a short meeting to them.

In our context query system, context information required by
Zoe’s application is gathered by several context sources, such as the
device’s GPS sensor, Web services and contact data. Each source
offers an RDF context description that is gathered, optionally ag-
gregated with similar contexts and transformed into a Prolog fact-
base. The RDF representation and processing of context data is de-
scribed in Section 3. Context reasoning is expressed in our OCL-
inspired logic query language that is introduced in Section 4. Con-
text queries are first compiled, then transformed into Prolog queries
and predicates and finally applied to the factbase. The query returns
a result set, indicating if the required context is available, and pro-
vides a map of the query’s variable bindings.

3. Context Management System
The context management system (CMS) is devided into three parts.
A set of context sources provide context information and meta
data. The context information is retrieved from sensors, local ap-
plications or external services. The context information is aggre-
gated in a central CMS component. To use the CMS, a Client
first requests a set of context sources to be queried - either by di-
rectly naming the source or by specifying properties that should
be fulfilled by the context sources. Afterwards a client can evalu-

ate queries on the CMS or register context listeners (called asyn-
chronous queries), which are notified once the result of the corre-
sponding query changes.

The CMS is based on the OSGi component framework. OSGi
components, called bundles, are loosely coupled. They commu-
nicate via services registered in a service registry. Figure 1 illus-
trates the context management system and its intended usage. The
core component of the framework is the CMS bundle. It contains
a prolog-based context factbase and a context aggregator to feed
the factbase from a set of context source services with RDF data
modeled in RDFS. The context aggregator offers an API for re-
questing context sources via the RequiredContext interface, which
is further elaborated in Section 3.2. The prolog engine is based on
SWI-Prolog and its semantic-web library [13]. It provides a pars-
ing framework for RDF, an RDF triple store with optimized hash
indexes as well as predicates to evaluate the RDFS entailment.

Further the CMS contains the context query language (CQL)
compiler which generates Prolog goals and predicates from CQL
expressions. It can either be used statically for predefined queries
or at runtime by passing a query string to the compiler. For static
compilation the Compile interface to the CQL compiler receives a
textual abstract syntax tree (AST) representation of the CQL query.
The AST is type checked and translated to Prolog predicates and
queries for which the framework provides a compiler, including a
type checker and a Prolog code generator. At runtime the predicates
are loaded into the context-management system and the queries are
executed from byte code via the IQuery interface. The IContextAg-
gregator interface enables a client to describe the necessary context
information for the enclosing bundle.

Section 5 describes the embedding of the query language into
a library for JCop where query strings are passed to the CMS at
runtime. To take the full advantage of the type checker, an aspect or
context-oriented programming language extension can embed the
CQL grammar. This is realized in the aspect-language CSLogicAJ,
which uses the CQL compiler to generate context-aware aspects
statically.

3.1 RDF-based Context Representation
This section covers the mapping of RDFS class specifications to
Java interface types that form the basis of the context-query lan-
guage. The mapping is used for two purposes. First it specifies the
Java objects returned by CQL queries and secondly it is the basis
for the type system of the CQL. Since the description of the type
system goes beyond the scope of this paper it will not be elaborated
any further here.

The specification of an RDFS class can be distributed among
several RDFS files, of which only a subset may be imported by any
one client. To be able to statically type check our classes we only
check against the RDF schemas imported by the aspect in question.
The described types are therefore not globally defined, but only
valid for the imported schemas in the current scope. For lack of
space we only illustrate the general idea of the mapping.

Class and Property Mapping
RDF classes are mapped to Java interfaces. All properties and
sub-properties1 defined by rdfs:domain definitions are mapped to
getter methods with an array return type, where the component type
is the declared rdfs:range 2. The common super interface for all
classes is URIReference. It contains all properties whose domain is
rdfs:Resource, rdfs:Class or do not have any domain declaration
at all. The predefined rdf:property Source links each class and

1 RDF models sub-properties via the rdfs:subPropertyOf relationship.
2 The case of several range definitions goes beyond the scope of this paper.

ex:Contact rdf:type rdfs:Class.
ex:name rdf:type rdf:Property.
ex:name rdfs:domain ex:Contact.
ex:name rdfs:range xsd:string.

→

interface Contact
extends URIReference {
String[] name();

}

Figure 2. Exemplary mapping of the rdfs class Contact

property to a class Source, offering optional meta-data about the
providing context source:

@prefix c: <http://www.iai.uni-bonn.de/context>.
c:Source rdf:type rdfs:Class.
c:Source rdf:type rdf:Property;

rdfs:domain rdfs:Resource;
rdfs:range c:Source.

By default it does not contain any properties.
Context sources, which will be discussed further in Section 3.2,

may additionally define arbitrary meta data, e.g. accuracy, in their
RDF Schema definition.

Figure 2 illustrates the RDFS mapping with the class Contact
and one property name with range xsd:string. All primitive data
types defined in XML Schema [8, 3.2] are represented as Java
basic types. RDF containers and collections are represented in the
same way, but marked as collection properties3. Since rdfs:range
definitions do not allow for parametric polymorphism the return
type of the method is always Object4.

We adopted the prefix namespace binding from XML names-
paces [8] in order to separate the simple name from a URI and also
to distinguish classes and property names in different namespaces.
In contrast to XML namespaces the prefixes on property and class
names only need to be specified if the simple name is ambiguous.

Depending on the level of language integration there are three
options of using this mapping from a concrete language or client:

1. The types are represented as a generic graph with nodes of
type IContext defined in Figure 3. The edges are traversable via
getObjectsForProperty. The JCop example in Section 5 use
this approach.

2. The code of a language is statically compiled against the inter-
faces in a certain context, e.g. a context-aware aspect or layer
refers statically to a set of imported RDFS types. In this variant
the Java types do not exist at runtime and internally the generic
graph of IContext objects is used for the implementation.

3. Java interfaces are generated from the RDF mapping and used
in a Java client that accesses the CMS.

The first approach is the most flexible, but does not offer static
compilation and processing queried context objects takes a lot of
effort since object properties are represented in a generic fashion
by key value pairs and subtype relationships are not reflected by a
Java hierarchy. The second approach is suitable for Java language
extensions which incorporate the RDF Java mapping, without re-
alizing are concrete Java class generation. This makes it possible
to statically compile e.g. an aspect A1, against a set of imported
RDF schemas and another layer A2 against another set of schemas,
resulting in two different sets of RDF classes.

The third variant is suitable when query results are referenced
from regular Java code and a common set of RDF schemas is used
throughout the whole application. In this case a set of Java classes
is statically generated and can be referenced by code compiled by

3 They will be handled differently by the context query language.
4 Assuming the namespace definition: namespace rdfs =
"<http://www.w3.org/2000/01/rdf-schema#>";

public interface IContext {
public Object[] getObjectsForProperty(String fieldName);
public String getContextClass();
...

}
interface IContextSource {
String getId();
String[] getRDFSchemas();
void start(IContextAggregator aggregator);
void stop();
InputStream getSnapshot();

}

Figure 3. Generic context classes IContext and IContextSource

interface NearbyService extends IContextSource {
@RDFSClass(type="http://example.com/Nearby",list=true)
ISnapshot nearby(Map<String,Object> parameters);

}
interface ISnapshot {
int getExpirationTime();
InputStream getData();

}

Figure 4. IContextProvider

a common Java compiler. This step is comparable to other static
RDF Java generators5.

3.2 Local and Query Context Sources
Local Context Sources are represented as OSGi services. The com-
plete context data of a local context source is stored in the Prolog
database. They implement the interface IContextSource, see Fig-
ure 3. Context sources may compete with each other, e.g. differ-
ent location sensors provide the same context classes but may use
different means to acquire them, like GSM triangulation and GPS.
They can provide dynamic meta information about themselves, like
precision, in key value pairs as OSGi service properties. Section 3.3
will explain how this meta data can be used in service requests.

There are two options to configure local context sources. Either
they push data incrementally to the context aggregator, which is
started by the start() method, or the context aggregator pulls snap-
shots of a sensor, e.g. the current gps position via getSnapshot().

A range of approaches (e.g., [10]) extend OSGi to a remote
framework. Based on these frameworks, context sources can be
remote OSGi services located on a different node. Still, they feed
the prolog database with the complete data-set of a context source.
But for some contexts, access to only a subset of the source’s data is
necessary. For example, if it refers to a large database, it is desirable
to consider only specific data, not the whole content. Examples for
such context sources are social network APIs that provide access
to their databases via Web services. In this case, Query context
sources can be applied. Query context sources are implemented in
pure Java and therefore we cannot refer to mapped RDF classes.
They implement the IContextSource interface, as does any other
context source, and additionally contain a method for each query
to the external service. Each method has an @RDFSClass annotation
attached, representing the RDF class returned by the method.

The only parameter that is passed to the method must be of the
type Map<String,Object>. It takes key value pairs with values of
type string or basic types. The parameter map is kept generic, to
easily integrate RESTful webservice interfaces with non-fixed ar-
gument sets. Figure 4 illustrates this with the nearby service inter-
face which is wrapped in an equally named method that can be
linked to a localization service such as Google Latitude for in-
stance. This context source will later be used in a JCop layer to

5 e.g. RDFReactor (http://semanticweb.org/wiki/RDFReactor), Sommer
(https://sommer.dev.java.net/)

retrieve nearby contacts. The nearby method expects the param-
eter maxDistance, providing the maximum distance in meters to
nearby contacts. The type declaration in the @RDFSClass annota-
tion describes the returned RDF type of the method which is nec-
essary for the static type safety of the query language. The con-
nection to the service and the mapping to RDF falls into the re-
sponsibility of the IContextSource itself. The queries on external
context sources are executed via a Prolog Java Bridge, which is part
of SWI-Prolog’s bidirectional Prolog/Java interface JPL. Since ac-
cessing remote data is a time consuming operation, caching is an in-
tegral part of our framework. All data belonging to the same query
and containing the same input parameters is cached until the expira-
tion time is reached. The returned triples are added to the factbase
and can be queried by later expressions, following logical update
semantics [3].

3.3 Requesting Context
The framework offers two different means for requesting contexts.
A context requester may either request a concrete context source,
by referring to their services, or to context classes, by referring to
RDF schemas containing the required context classes.

The former is necessary if a specific sensor, e.g. a GPS sensor, is
needed or different sensors providing the same context information
should be aggregated. The latter is useful if only the context kind,
e.g. location information, is relevant but the actual context source
may be chosen or switched automatically by the system. Addition-
ally, both requests can be combined with an LDAP (Lightweight
Directory Access Protocol)[2] filter string to filter context sources
via meta-data attached to the context source service6.

The LDAP was originally developed as a directory service to
manage information about users, hardware and services in a com-
pany network. The LDAP standard defines a filter language to
search for (filter) resources based on attributes attached to the re-
source. Each attribute stores a single type of information. The pre-
defined attribute objectclass represents all class (interface) names
under which a service was registered to the system. OSGi services
are optionally registered with a set of attributes attached to the ser-
vice, e.g.

public void start(BundleContext bc) {
Hashtable props = new Hashtable();
props.put("quality", "10");
LocationSensor sensor = ...;
bc.registerService(LocationSensor.class.getName(),
sensor, props);

LDAP filters include less-than, equal and greater-than checks on
the service attributes which can be combined by logical operators.
The attributes can be updated at runtime by altering the properties
on the service reference.

In case the properties change, a service event is fired and all reg-
istered listeners are notified. The properties are added to a context
source as described in Section 3.2.

The filter allows for fine-grained selection of context-sources
based on attributes attached to the context sources. The prede-
fined filters include equality and comparison checks of attribute
values of a single source. But they lack the comparison of attributes
across different services. Therefore we added the min(attribute)
and max(attribute) conditions which are true for the sensor with
the maximum property value. If several services have the same at-
tribute value the condition is true for an arbitrary service. Figure 5
shows the IContextAggregator interface, which Clients use to re-
quested context sources. The members of the annotation have the
following meaning:

6 LDAP filter matching of services is already built into OSGi service
queries.

public interface IContextAggregator {
public IContextRequest requestSource(Bundle bundle,

Class source, String strategy, Cardinality cardinality);
public IContextRequest requestSchema(Bundle bundle,
String schema, String strategy, Cardinality cardinality);

public void removeRequest(IContextRequest schema);
}
public enum Cardinality { single, multiple }
public interface IContextRequest {
boolean isAvailable();
void dispose();
...

}

Figure 5. Requesting Context - Dynamic Approach

source A context source class registered as a service.

schema The requested schema definitions.

strategy A filter expression following the syntax described above,
which refers to the corresponding source or schema. If left
empty no further strategy is applied. The system will use the fil-
ter (objectclass=org.cs3.ditrios.context.IContextSource) in this
case.

cardinality A member of the Cardinality enumeration listed in
Figure 5 with the options single and multiple source. In case of
the single option only one (arbitrary) context is chosen which
matches the filter and is the default setting. Otherwise all match-
ing context sources are selected.

The contexts can also be requested and removed dynami-
cally via the IContextAggregator interface, see Figure 5. The
IContextAggregator API allows the clients to change the requested
contexts at runtime based on either program state or user interac-
tion. An example for the latter might be asking the user which ad-
dress book service should be used to reason about contacts in a
context-sensitive application. In case only an RDF schema is re-
quested the context source might change transparently. Lets as-
sume a client requests a Location schema with maximum precision.
While indoor a WLAN localization context source is used. Once
the device is moved outside and a good GPS signal can be acquired
the CMS switches to GPS localization transparently for the client.
Each request is represented as an IContextRequest instance and
must be removed, once the context is not needed anymore. This
happens automatically once the enclosing OSGi bundle is stopped.

4. Context Query Language
The Context-Query Language (CQL) is based on the syntax of the
Object-Constraint Language (OCL). We have chosen it as a role
model because it is well known to developers, provides good means
for constraints on object graphs and has a simple syntax for object
graph traversals. We further integrated logic variables to query for
context objects. We only sketch the language in this paper, since we
focus on the context-management system.

Contexts are queried by predicates over the Java RDF types,
as described in the previous section. We can refer to the set of
instances of a class with its class name C. The language provides
a number of operations on context sets, aligned to the OCL names:
select, reject, forAll, exists and additionally the one operation. The
following expression selects all context instances bound by the
expression e which fulfill the condition c:

e->select(c)

Properties on a list of contexts are mapped to each list member
individually, meaning for all list elements for which the property
exists, the property is added to the returned list. So the following
expression matches all properties p of instances of C fulfilling c:

C->select(c).p

The one operation is special to the CQL compared to OCL. It binds
one context instance at a time and the CQL backtracks over all
elements of a list:

e->one(c)

The condition c is evaluated in the context of the queried type. If
the property has an rdfs:range of rdf container or collection v will
be bound to the array of all elements, otherwise it will backtrack
over all defined properties, e.g. in case Contact->one().name over
all defined name properties. The instance of the queried class may
be named; in the following example, the current contact instance is
bound to c.

Contact-
>one(c | c.firstName=value1&& c.lastName=value2) {...}

All logic variables must be declared at the beginning of the ex-
pression enclosed in parenthesis and separated by a colon from the
query. Variables and expression can be unified via the unification
operator “=”, e.g.

(Contact c): c = Contact->one()

binds the variable c to a Contact object and the CQL backtracks
over all contact object in the context factbase.

Accessing query context sources In Section 3.2 we introduced
context query sources, they take a set of parameters and return a
structured set of data. In the CQL they are queried by the following
expression:

var = SensorTypeName->methodName({param1 = value1,...})

Continuing the nearby contacts example, a query returning infor-
mations about contacts within a maximum distance of 100 meters
can be written as:

(Nearby[] nc):
nc = NearbyService->nearby({maxDistance=100})

Universally quantified statements over context lists are writ-
ten as e->forAll(c) and the existential quantification is written
as e.exists(c). The language supports all primary logic operations
(and, or, not), e.g. the following conditions ascertains that all con-
tacts from the given list cs are nearby and that their distance to the
current position is less than the value max.

(Contact[] cs, int max) : cs->forAll(c | NearbyService->
nearby({maxDistance=max})->exists(c.email=email))

5. JCop Query Library
We developed a library for JCop [1] as an interface to the query
system. JCop is a language extension to Java implementing the
context-oriented programming approach [6]. It provides first-class
layers (modules that encapsulate variations of methods) and ex-
plicit, implicit, and declarative constructs to control layer activa-
tion at run time (controlling which method variation a call is to
be dispatched to). Offering these constructs, JCop supports means
to modularize and control context-depended functionality. Context
reasoning, however, is not explicitly supported, yet.

5.1 Overview
Our JCop query library supports executing context queries and
defining actions - for example, layer activation - to be taken on
context change. In the following, we briefly describe the most
important API objects and methods7.

7 The classes ContextQuery and IContextHandler belong to the library
package jcop.query; Layer refers to jcop.lang.Layer.

ContextQuery(ContextRequest, String, String) A query ob-
ject is instantiated with its context type schema, a default
namespace, and a string representation of the CQL expression.

boolean ContextQuery.evaluate() A query can be executed syn-
chronously and will immediately return a Boolean value
whether the context is constituted or not.

void ContextQuery.evaluate(IContextHandler) Queries
can also be executed asynchronously. In that case, an
IContextHandler object is passed to the query’s evaluation
method that is called by the CMS on context entry and exit.

ResultSet ContextQuery.getResultSet() The variable bindings
of the last executed query are represented by a ResultSet that
holds a list (for each solution found via backtracking) contain-
ing maps of key-value pairs. In addition, ResultSet provides
some auxiliary methods such as boolean isEmpty().

void ContextQuery.addLayers(Layer[]) Layers can be associ-
ated with a query, for example, to make them accessible to the
IContextHandler callback methods.

void IContextHandler.onContextEntry / Exit(Layer[]) The
callback methods are activated on context change and can be
used for implementing any kind of reaction to the new state.
They are parameterized with Layer objects if they have been
associated with the query.

5.2 Example
In the following, we sketch a decomposition of the ToDo appli-
cation example using our context query library. The example in
Figure 6 presents three main activities: modularized definition of
adaptation code with layers, context reasoning with the query lan-
guage, and activation of the adaptation by a context object .

The layer NearbyContactsMsg implements the nearby contacts
message display on interaction with the calendar application (Lines
6–15). The layer and its partial methods require context data in
form of references to the nearby contact objects. This information is
passed to the arguments of the layer constructor8. Layer activation
is controlled by a on predicate encapsulated in the NearbyContacts
context object. The predicate is evaluated on every execution of a
layered method; if its boolean expression returns true, it activates
the nearby contact layer for this method execution. The context ob-
ject is created and activated during generation of the corresponding
ToDoItem (Lines 20–21). The context query is created on instanti-
ation of NearbyContacts. First, we request a context schema from
the ContextAggregator that defines the context types to be used in
our query (Lines 35–40) and declare the default RDF namespace
(Line 43). With that, we are able to specify the actual query as a
string, using Contact and NearbyService and their properties. The
query first selects all Contact entities that fulfill the condition of the
select predicate, i.e. where first and last name match a Contact ob-
ject (associated with the ToDoItem). These entries are then filtered
by a forAll predicate. It selects only those entries for which the
NearbyService context type finds a match within a range of 100
meters (Lines 44–47). We use JCop’s on predicate to evaluate the
context query at any layered method, that is, any method poten-
tially affected by the respective layer activation (Lines 28–29). In
this example we use the synchronous query evaluation that returns
a Boolean value indicating that the context is active.

6. Related Work
Most context-aware platforms concentrate on the context manage-
ment providing a well-defined interface for an application. The ap-

8 Layer and context instantiation has been recently introduced as a new
feature to the JCop language.

1 public class CalendarApp {
2 public void initialize() {...}
3 ...
4 }
5
6 public layer NearbyContactsMsg {
7 private void ResultSet contacts;
8
9 public NearbyContactsMsg(ResultSet rs) {

10 thislayer.contacts = rs;
11 }
12 before public void CalendarApp.initialize() {
13 //show message which contacts are nearby
14 }
15 }
16
17 public class ToDoApp {
18 public addContactsToItem(Contact[] cts) {
19 ... //create a new ToDoItem
20 ctx = new NearbyContacts(cts);
21 ctx.activate();
22 }
23 }
24
25 public context NearbyContacts {
26 private ContextQuery nearby;
27
28 on(nearby.evaluate()) :
29 with(new NearbyContactsMsg(nearby.getResultSet()));
30
31 public NearbyContacts(Contact[] cts) {
32 this.nearby = createQuery(cts);
33 }
34 private ContextQuery createQuery(Contact[] cts) {
35 ContextRequest request =
36 CMS.getContextAggregator().requestSchema(
37 null,
38 "http://www.example.org/nearby.rdf",
39 "max(precision)",
40 Cardinality.single);
41 return new ContextQuery(
42 request,
43 "http://www.example.com",
44 "Contact->select(" + createCond(cts) + ")
45 ->forAll(c | NearbyService
46 ->nearby({maxDistance=100})
47 ->exists(c.email=email))");
48 }
49 private String createCond(Contact[] cts) {
50 // for each contact c in this.cts, generate:
51 // (firstName=c1.getFirstName() &&
52 // lastName=c1.getLastName()) || ...
53 }
54 }

Figure 6. Implementation of the ToDo application using JCop’s
query library.

plication anticipates the interfaces to the context management and
is therefore itself context-aware. One example is the SOCAM ap-
proach [5] by Gu et al., an approach built on top of the OSGi frame-
work. Context reasoning is carried out with a rule system based on
first-order logic. The context model is described with the help of
the Web Ontology Language OWL [9]. Automatic adaptation of
the program based on the current context state is not supported.

Semantic Space [12] focuses on three main tasks: to provide
an explicit representation of the raw context data, to provide the
means to acquire contexts via expressive queries and thirdly to
provide high-level contexts through reasoning. The context itself is
modeled as an ontology, context wrappers provide these contexts,
they are discovered and handled by a context aggregator. Four basic
classes can be used to characterize smart spaces; user, location, and
computing entity as real world objects as well as the activity as a
conceptual object. Though conceptually very similar, it does not
offer tight language integration, no mapping of contexts to Java
objects and the query language is not as expressive as our CQL.

Du and Wang developed a programming approach for context-
awareness on mobile devices [4] that supports method interception
at each state transition, that is, at each entrance and exit of contexts.
The context itself is represented by a set of sensor values. Reacting
to context changes is restricted to the use of callbacks. Context

sensor values are restricted to numbers and are polled at an interval
rather than by the application on demand.

7. Summary and Future Work
This paper presented a context-management framework which al-
lows for tight integration with object-oriented languages. We fo-
cused in this presentation on a context model representation and
infrastructure for requesting and querying context sources and how
they can be integrated into the context-oriented programming lan-
guage JCop. The properties of the context query language were
only outlined in general. Future work will introduce the statically
typed context query language and how it can be integrated into the
aspect-language CSLogicAJ [11]. For more-complex queries it of-
fers the definition of recursive predicates, which are reusable by
utilizing a generic type system. Furthermore the access of context
source meta-data will be illustrated.

References
[1] M. Appeltauer, R. Hirschfeld, H. Masuhara, M. Haupt, and

K. Kawauchi. Event-based Software Composition in Context-oriented
Programming. In Proceedings of the 9th International Conference on
Software Composition, Lecture Notes in Computer Science, pages 50–
65, Berlin, Heidelberg, Germany, 2010. Springer-Verlag.

[2] B. Arkills. LDAP Directories Explained: An Introduction and Analy-
sis. Addison-Wesley Professional, 2003.

[3] E. Boerger and B. Demoen. A framework to specify database update
views for Prolog. Lecture Notes in Computer Science, 528, 1991.

[4] W. Du and L. Wang. Context-aware application programming for mo-
bile devices. In C3S2E, volume 290 of ACM International Conference
Proceeding Series, pages 215–227. ACM, 2008.

[5] T. Gu, H. K. Pung, and D. Q. Zhang. Toward an OSGi-based Infras-
tructure for Context-Aware Applications. In IEEE Pervasive Comput-
ing, vol. 03, no. 4, Oct-Dec 2004.

[6] R. Hirschfeld, P. Costanza, and O. Nierstrasz. Context-oriented Pro-
gramming. Journal of Object Technology, 7(3):125–151, March-April
2008.

[7] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M.
Loingtier, and J. Irwin. Aspect-oriented Programming. In Proceedings
11th European Conference on Object-Oriented Programming, volume
1241, pages 220–242. Springer-Verlag, 1997.

[8] A. Malhotra and P. V. Biron. XML schema part 2: Datatypes
second edition. W3C recommendation, W3C, October 2004.
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/.

[9] C. Welty M.K. Smith and D.L. McGuinness. Owl web ontology
language reference. http://www.w3.org/TR/owl-ref, Feb. 2004. World
Wide Web Consortium (W3C) recommendation.

[10] J. S. Rellermeyer, G. Alonso, and T. Roscoe. R-osgi: Distributed
applications through software modularization. In Middleware, pages
1–20, 2007.

[11] T. Rho, M. Schmatz, and A. B. Cremers. Towards context-sensitive
service aspects. In In Proceedings of the Object Technology for
Ambient Intelligence and Pervasive Computing Workshop, July 3-7,
Nantes, France. July 2006.

[12] Xiaohang Wang, Jin Song Dong, ChungYau Chin, SankaRavipriya
Hettiarachchi, and Daqing Zhang. Semantic space: An infrastructure
for smart spaces. IEEE Pervasive Computing, 3:32–39, 2004.

[13] J. Wielemaker, M. Hildebrand, and J. Ossenbruggen. Using Prolog as
the fundament for applications on the semantic web. In Proceedings of
the 2nd Workshop on Applicatiions of Logic Programming and to the
web, Semantic Web and Semantic Web Services, volume 287 of CEUR
Workshop Proceedings, pages 84–98. CEUR-WS.org, 2007.

