
Sanshusha pLATEX2ε: c01_taeumel : 2017/1/16(17:14)

103

Unravel Programming Sessions with THRESHER:
Identifying Coherent and Complete Sets of
Fine-granular Source Code Changes

Marcel Taeumel, Stephanie Platz, Bastian Steinert,

Robert Hirschfeld, and Hidehiko Masuhara
Development teams benefit from version control systems, which manage shared access to code reposito-

ries and persist entire project histories for analysis or recovery. Such systems will be efficient if developers
commit coherent and complete change sets. These best practices, however, are difficult to follow because
multiple activities often interleave without notice and existing tools impede unraveling changes before com-
mitting them. We propose an interactive, graphical tool, called Thresher, that employs adaptable scripts to
support developers to group and commit changes—especially for fine-granular change tracking where numer-
ous changes are logged even in short programming sessions. We implemented our tool in Squeak/Smalltalk
and derived a foundation of scripts from five refactoring sessions. We evaluated those scripts’ precision and
recall, which indicate a reduced manual effort because developers can focus on project-specific adjustments.
Having such an interactive approach, they can easily intervene to accurately reconstruct activities and thus
follow best practices.

1 Introduction
Software developers benefit from version control

systems (vcss), which manage collaborative work
and persist whole project histories. In systems such
as Git†1 and Mercurial,†2 developers can commit
changed source code with descriptive messages into
distinct branches to separate features or bug fixes.
When committing, branching, or merging, new ver-
sions of the project arise and a particular devel-
opment trace emerges in the vcs. Such historical
information can then be used to ease code compre-

完全かつ一貫した細粒度コード変更集合の検出によりプロ
グラミングセッションを解きほぐす THRESHER

Marcel Taeumel, Stephanie Platz, Bastian Steinert,
and Robert Hirschfeld, Hasso Plattner Institute,
University of Potsdam, Germany.
増原英彦, 東京工業大学情報理工学院, Department of

Mathematical and Computing Science, Tokyo Insti-
tute of Technology.
コンピュータソフトウェア,Vol.34,No.1 (2017),pp.103–118.
[研究論文] 2016 年 3 月 24 日受付.
†1 http://git-scm.com
†2 http://mercurial.selenic.com

hension [37] or to reason about software evolution
patterns [3].

Software evolution induces very high costs in
software development [2] and hence developers are
advised to follow best practices to maximize the
benefits of vcss. One important practice is con-
tinuous integration [8]: commit and test code on
a regular basis. When committing, only store
small, coherent, complete change sets with a brief
yet descriptive message to improve comprehensibil-
ity [35]. A well-organized project history can also
improve code review processes [1] and recommender
systems [4]. —Robbes et al. [26] observed that de-
velopers frequently commit once per working day
on average. Further research [16] [18] [26], however,
shows that developers tend to commit incoherent
change sets. Buse and Weimar [5] also found that
only two-thirds of commits get assigned with a de-
scriptive message.

We argue that one challenge for developers is
that multiple activities interleave [21]—often with-
out being noticed even in short sessions as illus-
trated in Figure 1. Manual refactorings, for exam-
ple, typically include changes to affected code that

Sanshusha pLATEX2ε: c01_taeumel : 2017/1/16(17:14)

104 コンピュータソフトウェア

Fig. 1 Multiple activities (A to E) often
interleave without notice (top) and best
practices suggest to untangle and assemble
changes before committing them (bottom).
This is often challenging with existing tools.

get accidentally postponed because developers sim-
ply forgot. Existing tool support typically poses
high effort on following best practices, especially
for fine-granular change models that track numer-
ous changes even in short sessions [33]. Developers
tend to explain all tangled and scattered changes
from one session in a single commit message—if
any. Consequently, understanding project histories
will be impeded. Based on these observations, we
address the following research question:

How can we support developers to identify
coherent and complete sets of fine-granular
changes when committing code to a repos-
itory?

We define a change set as coherent if it contains
only changes that origin from a single activity; it is
complete if it contains all changes from that (com-
pleted) activity. We focus on fine-granular change
models where every modification to the code base
is tracked, even two consecutive changes that re-
scind each other. We think that semi-automatic
tool support should favor coherent sets over com-
plete ones, that is, avoid false-positives but accept
false-negatives. Then, developers do only have to
merge change sets to make them complete. In fact,
we believe that there cannot be one fully automatic
approach but the developer has to be part of the
process to benefit from tacit project knowledge.

We propose a scriptable, interactive, graphical
tool that supports developers to (1) identify conse-
cutive changes that indicate continuity of an activ-
ity and (2) collect scattered runs of changes that

belong to the same activity. We make use of a sim-
ple scripting language as a flexible extension mecha-
nism, because we think that software projects have
domain-specific characteristics to be specified by
the who are developers actually working on the
project. Our scripts are basically just Smalltalk
code:

[:grouper |

"Add all moved methods in a group."

grouper addGroup: grouper

moveMethodChanges].

Based on a lab study [33] including 5 program-
ming sessions with up to 250 fine-granular changes
each, we derived a foundation of scripts that can
be combined to semi-automatically reveal activity-
specific change sets. When evaluated, a script
assigns changes into groups and adds recommen-
dations†3 if changes are already part of distinct
groups. After this scriptable analysis, develop-
ers can explore all proposed groups, adjust them
manually, or resolve recommendations. We imple-
mented the graphical tool Thresher in Squeak/S-
malltalk,†4 which visualizes intermediate results
concisely and reduces the effort for manual adjust-
ments. The underlying rules of identifying coherent
and complete sets of changes can easily be accessed
and modified.

In this paper, we make the following contribu-
tions:
• A design for an interactive, scriptable tool we

call Thresher, which supports developers to
assemble coherent and complete change sets for
fine-granular source code changes

• A description of an exemplary scripting in-
terface, which supports the Squeak/Smalltalk
change model, to emphasize the simplicity of
extending Thresher for domain-specific needs

• A brief description of scripts we extracted from
a lab study to support Smalltalk-based refacto-
ring sessions—including an evaluation in terms
of precision (almost 100%) and recall (33% to
57%) of the proposed groups, which illustrates
coherence over completeness

The next Section 2 summarizes related work.

†3 Note that we use the term “recommendation” un-
related to the domain of recommendation systems.

†4 The Squeak/Smalltalk programming environ-
ment: www.squeak.org

Sanshusha pLATEX2ε: c01_taeumel : 2017/1/16(17:14)

Vol. 34 No. 1 Feb. 2017 105

Section 3 describes existing challenges in state-of-
the-art commit tool support. In Section 4, we
present our tool Thresher and give an introduc-
tion to its scripting capabilities; we also present a
foundation of scripts for developers to get started.
We evaluate those scripts in Section 5 and discuss
limitations and applicability to other environments.
Section 6 sketches hypotheses and next steps for
this kind of commit tool support. Finally, we con-
clude our thoughts in Section 7.

2 Related Work
There are not many projects that try to pro-

actively involve developers in the process of com-
mitting changes. Although, there are many
projects that investigate how to automate the iden-
tification of coherent change sets—only after com-
mits have been taken place. Some projects derive
rules by mining project histories, other projects
create rules for changes that have detailed con-
text information. Most of them deal with domain-
specific characteristics, which emphasizes the need
of adaptability and manual intervention when using
such tools.

Note that there is always the possibility to ask
programmers to explicitly set a scope before making
any changes, hopefully producing a clean, untan-
gled history record. For example, the Mylar/My-
lyn plugin for Eclipse provides that level of sup-
port [19] [25]. We argue that such an approach is
not prepared for many software projects out there
because it expects too much cautiousness while pro-
grammers get distracted by side-tasks too easily.
At the end of the day, untangling existing changes
becomes an issue and tools have to support that.

The tool Historef [14] takes an approach similar
to Thresher. There, programmers can untangle
edits in Java source code files to form task-level
commits or do selective undo. — While Historef
accounts for the concept of a custom edit recorder,
Thresher was designed to work with several kinds
of change models, even coarse-grained ones. Both
tools do not provide automatic measures to pre-
vent bugs introduced by reordering history events.
Thresher operates on an object-oriented level and
abstracts from files by means of packages, classes,
and methods. Additionally, Thresher incorpo-
rates the idea of adjusting the automated grouping

rules to accommodate domain-, project-, or task-
specific requirements.

When mining repositories, existing changes are
often modeled and analyzed at a fixed level of
detail. Herzig and Zeller [15] [16] applied ma-
chine learning to adjust project-specific weights or
thresholds for data dependencies, lexical distance
measures, or test impact couplings. They analyzed
coherent change sets that were already assigned to
particular bug fixes. Kawrykow and Robillard [18]
looked for behavior-preserving thus non-essential
changes, which include rename-refactorings. They
claim that such changes affect coherence nega-
tively. Kim and Notkin [20] derived logical rules
from change sets, which also identify anomalies
and hence tangling changes such as “All meth-
ods X in classes that implement interface Y got
deleted, except class Z.” This should also help de-
scribe commit messages. — We derived a foun-
dation of scripts from 5 programming sessions,
which arguably reflect many important character-
istics of object-oriented projects in Smalltalk. One
can easily extend this approach with mining some
Squeak/Smalltalk repositories to identify more cor-
ner cases. As scripts represent concise and acces-
sible descriptions of a particular change model, we
argue that developers can easily adapt those scripts
to accommodate domain or project-specific needs.

When approaches are open to extensions in
the change model, identification and classification
methods can benefit from any kind of context in-
formation such as developer activity tracking. For
example, Coman and Sillitti [6] tracked tool inter-
actions and created the notion of time intervals of
intensive access to help detect activity switches;
Zou and Godfrey [41] verified this approach in an
industrial setting. Robbes et al. [27] [28] also track
timestamps and use time-coupling to improve re-
call. Besides that, they track tool window usage,
code authors, and annotations to indicate auto-
mated refactorings. If actually noticed, the devel-
oper can express the beginning of a new activity
explicitly. Yoon et al. [39] log all low-level events
of the Eclipse code editor in an XML format to be
processed by other tools. — Thresher promotes
fine-granular change tracking without making as-
sumptions about the level of detail that is tracked.
For example in our Squeak/Smalltalk environment,
there were logs for tool-controlled refactoring activ-

Sanshusha pLATEX2ε: c01_taeumel : 2017/1/16(17:14)

106 コンピュータソフトウェア

ities, which could be used to simplify script code.
Other extensions to the change model could further
improve both scripts, results, and hence the overall
utility.

Working with numerous fine-granular changes
raises challenges for graphical tools from an infor-
mation visualization perspective. Many approaches
apply a timeline metaphor to provide overview
and details on demand as pluggable visualizations
in programming environments. Examples include
Azurite [40] and CodeTimeline [23]. — We argue
that common list, table, or tree views are capable
of presenting huge amounts of data in a support-
ive way. Problems will arise primarily if developers
have no simple means to configure the views’ level
of detail. Thresher employs those means by giv-
ing developers that required configuration support
in terms of adaptable scripts with direct feedback
after script modifications.

3 Challenges in Existing Tools
In this section, we highlight important factors

that substantiate the need for better tool sup-
port when committing source code to a vcs. We
cover the nature of interleaving programming ac-
tivities, state-of-the-art tool support, and specifics
of the Squeak/Smalltalk change model—as we built
Thresher in that programming environment.

3. 1 Interleaving Programming Activities
The more programming activities interleave dur-

ing a session, the more important it is to untangle
them to commit only coherent and complete change
sets. The number of actually traceable activities
will be influenced by the developer’s task and the
level of change tracking editing tools provide. As
for the task, a simple bugfix may spawn only one ac-
tivity but “drive-by corrections” and other activities
interleave quite often [21] [24]—those should be doc-
umented in separate commits. As for the change
tracking, the more editing events get tracked, the
higher the chance that a developer’s activity drifts
get documented for the long term—all the more
if there are many modifications that rescind each
other during a session.

File-based environments (such as Java + Eclipse
+ Git) compare the local working copy with the
latest version in the vcs to determine changes at

the level of text lines, which typically match pro-
gram statements. We consider such an approach
as coarse-grained because overwritten changes are
not tracked as coherent program entities but only
at the level of character ranges. Object-based
environments (such as Smalltalk + Squeak +
CoExist [32]) log any modification to the code
base by means of method and class changes. This
allows for rewinding or replaying single decisions
and whole programming sessions. Such a change
model is more fine-grained and persists more de-
tails of a project’s history.

There is a programming approach called explo-
rative/exploratory programming [9], where develop-
ers are encouraged to make any change as they go
without having a specific task in mind. They do
not know upfront whether they will fix some bugs
or add some neat features or clean-up some code.
If software projects encourage emerging specifica-
tions, a programming environment that supports
explorative programming will help programmers
write those specifications [31] [30] while the software
system is growing. This approach frees program-
mers from being too specific too early in highly un-
certain scenarios like many research projects face.
At the end of an explorative session, developers
can have numerous changes to untangle. We argue
that there is a need for better commit tool support
to even promote explorative programming and still
ease comprehension of and learning from project
histories.

3. 2 Interactive Commit Tool Support
Figure 2 gives an impression of how existing com-

mit tools make use of graphics and interaction.
First and foremost, those tools present changes in
scrollable lists with support for manual selection
only. “Advanced” filtering covers presets such as
all, none, and invert selection. It doesn’t matter
whether changes are file, method, or line-based:
Such interfaces do not support untangling many
changes very well. Furthermore, multiple activities
have to be considered one after another.

However, we do consider lists or tables as ap-
propriate views because they can visualize chrono-
logical order in a compact fashion. What existing
tools miss is a way to filter and group changes ac-
cording to some rules, which may not be expressed
with a single button-click but rather simple scripts.

Sanshusha pLATEX2ε: c01_taeumel : 2017/1/16(17:14)

Vol. 34 No. 1 Feb. 2017 107

Fig. 2 Usually, commit tools show changes in long, scrollable lists, which developers have to
untangle by tedious manual selection for each single commit. LTR: Monticello for Squeak
(http://www.squeak.org), TortoiseSVN (http://tortoisesvn.net), SourceTree (http://www.
sourcetreeapp.com)

Additionally when seeing a complete and coherent
change set, developers may be better suited to pro-
vide a descriptive commit message.

3. 3 The Squeak Change Model
Squeak has a direct notion of changes, change

files, and change sets†5—but all in a local sense and
not shared like common vcss such as Git. Tracked
changes include any source code modification af-
fecting classes, methods, and their categories. In
Squeak, change sets represent means to manually
organize changes to easily file-out and share them,
for example, via mailing lists. There is a tool called
Change Sorter, which supports moving changes be-
tween sets in case the developer forgot to switch
before starting her activity. Overall, Squeak’s no-
tion of changes provides a local history of every-
thing that happens in the programming environ-
ment. However, not all changes are reversible per
se but, at the least, they can be replayed.

The Smalltalk community has a vcs called
SqueakSource†6 and an in-image tool called Monti-
cello as counterpart (left in Figure 2). When com-
mitting changes, Monticello only sees the latest ver-
sions of classes and methods. Cherry-picking is sup-
ported at the level of methods—not lines or ranges
of text.

†5 Except for this section, we do not use the term
change set in a Squeak-specific way but in a
broader sense throughout this paper.

†6 http://www.squeaksource.com

We make use of a recent research project called
CoExist [32], which extends Squeak’s change
model by storing data to revert changes. It also
adds the capability to Monticello to store fine-
granular changes in SqueakSource such as two con-
secutive modifications of the same method. In that
sense, CoExist elevates the fine-granular but local
change tracking of Squeak to the level of Monticel-
lo/SqueakSource, which is now comparable to other
vcss.

Building on top of many general concepts, we
created Thresher for Squeak/Smalltalk but are
arguably able to transfer our findings to other pro-
gramming languages, tools, and environments.

3. 4 The Vivide Tool Building
Framework

We implemented our tool Thresher with the
Vivide†7 tool building framework [34]. Vivide pro-
vides a direct mapping between all graphical parts
of the user interface and the internal tool logic. It
is implemented in Squeak/Smalltalk and builds on
top of the Morphic framework, which supports di-
rect manipulation of all graphical objects. With
employing this directness, the developer can easily
find responsible data transformation scripts start-
ing from a visual impression and express modifica-
tions in the script source code. Due to this simple
yet powerful abstraction, the framework can up-
date all running tools consistently. Thus, Vivide is
both a programming environment and a tool build-

†7 https://github.com/hpi-swa/vivide

Sanshusha pLATEX2ε: c01_taeumel : 2017/1/16(17:14)

108 コンピュータソフトウェア

Fig. 3 Thresher works bottom-up: groups of
changes will be merged (1-3) according to
scriptable rules. There are no partial merges
(4) but recommendations (5a) to be resolved
manually by the developer.

ing framework. Building tools means composing
widgets and writing script code.

The underlying concept of Vivide, that is de-
scribing tools as data processing pipelines, aligns
with our idea about analyzing code changes to re-
cover programming activities. Developers should
open it after finishing a programming session to as-
semble recent changes into groups, add descriptive
messages, and eventually commit them to the vcs
with only a few clicks.

4 Thresher
In this section, we explain structure and use of

our tool as well as details about how changes are
processed with scripts. The name “thresher” de-
rives from the fact that we want to identify all
changes that belong to a certain activity and ig-
nore the rest (for now)—just like the agricultural
machine does with winnowing.

4. 1 Changes, Groups, and
Recommendations

The overall goal is to make developers commit co-
herent and complete change sets with a descriptive
message. We classify a change set as coherent if it
contains only changes that origin from a single ac-
tivity; it is complete if it contains all changes from
that (completed) activity. In Thresher, scripts
support to detect activity continuations and thus
grouping changes coherently. Completeness might
often not be achieved on a scripting level because

some developer knowledge might be hard to express
or even ambiguous. Then, manual grouping via
Thresher’s graphical interface will take place.

There are multiple scripts that modularize the
change analysis process in a sequence of stages. At
the first stage, each change has its own group as-
suming that each change belongs to its own pro-
gramming activity. Intermediate stages either ex-
pand those groups by merging them or propose rec-
ommendations to be resolved manually. In the last
stage, each resulting group is meant to be com-
mitted to the vcs. The concept is illustrated in
Figure 3.

In script code, programmers can iterate over all
changes, check for specific properties, and assign
matches to new groups. Those checks depend on
the information available; a stage may also add new
information to changes by integrating external data
sources. For example, results of static or dynamic
code analysis can be embedded this way.

4. 2 How to Use and When to Use
Thresher’s graphical user interface is shown in

Figure 4. It consists of four main views:
À Sources View shows a chronologically or-

dered list with all recent changes. The order
can be adapted.

Á Result View shows resulting groups and rec-
ommendations. Developers can resolve recom-
mendations with button clicks, change groups
via drag-and-drop, and add descriptive mes-
sages.

Â Diff View shows details about all selected
groups to support developers to revise their de-
cisions in detail.

Ã Stages View reveals intermediate results of
the involved scripts, supports adapting (ad-
d/remove/reorder) them as well as reviewing
(or debugging) their effects.

There are several tasks that the developer accom-
plishes when working with Thresher. Those de-
scribe a seamless workflow and should encourage to
follow best practices by committing only coherent,
complete change sets as well as adding descriptive
messages.

At first, the freshly opened Thresher window
analyzes recent changes with the existing scripts
to form groups and add recommendations. The
source view À lists all changes chronologically with

Sanshusha pLATEX2ε: c01_taeumel : 2017/1/16(17:14)

Vol. 34 No. 1 Feb. 2017 109

Fig. 4 The main views of Thresher: À local, uncommitted changes, Á computed change sets
with recommendations, and Â detailed source code diffs.

a distinct label. The result view Á shows all result-
ing groups, which contain these changes and maybe
several ungrouped†8 ones. At the top of that view,
discarded changes are listed such as recognized de-
bugging code. All groups get single-letter labels for
easier recognition. At this point, the diff view Â is
not used because no group is selected.

After that, the developer reviews all group’s con-
tents to verify coherence and completeness. Select-
ing a group in the result view Á will reveal more
details in the diff view and highlight the contents,
which are automatically selected in the source view.
Any group can be marked as ready-to-commit by
clicking the checkbox near the group name. This
will separate that group visually by moving it to
the top as shown in Figure 4 for the group “bug fix:
less than key.”

Group C contains 6 changes and 4 recommen-
dations, which are highlighted in blue and orange.
To see the content of single changes, the developer
can hover over one of them in the source view.
To discard the changes, the developer selects them
and drag-drops them onto the “Discarded Changes”
group.

Recommendations can either be single changes
or whole groups as proposed by previous stages.
When hovering over a recommendation, the reason
is shown in a tooltip (Figure 4, bottom right). The

†8 With “ungrouped” or “single changes” we mean
single-change groups.

developer can accept recommendations by clicking
the tick-icon next to it; the cross-icon rejects it.

After resolving all recommendations, the devel-
oper can merge groups if she discovers a more ap-
propriate intent. This happens by simply drag-and-
drop groups on top of each other. It is also possi-
ble to move selected changes (or groups) between
groups.

Finally after reviewing a group, the developer
can propose a descriptive name, which is displayed
as the group’s name to help identify complete
ones. When she decides to commit, name and
description are used as commit message. Besides
manual naming, a short description of structural
changes is appended automatically such as “added
class SWA18World” and “modified method Player >>

render:.”
Developers can invoke Thresher whenever they

want. They do not have to actually do the com-
mit after they organized their changes, but they
can continue programming. However, we designed
Thresher to handle hundreds of fine-granular
changes at once. Hence we do not expect de-
velopers to continuously use it within a program-
ming session. We encourage developers to focus on
their tasks and not to worry about tangled history
records.

Sanshusha pLATEX2ε: c01_taeumel : 2017/1/16(17:14)

110 コンピュータソフトウェア

4. 3 Scripting to Accommodate
the Project’s Domain

Developers can accommodate domain or project-
specific needs by adding, removing, or reordering
stages. Each stage has a current script, which
developers can access, modify, and re-execute to
update the results. Once visible, the stages view
(Figure 5 resp. Ã in Figure 4) shows intermediate
grouping results. Scripts access the change model
and create groups with the help of a grouper like
this:

[:grouper | |newGroup|

newGroup := CustomGroup new.

grouper allChanges do: [:change | "See below."].

grouper addGroup: newGroup.

].

In our implementation, the scripting language is
Smalltalk and scripts are just blocks evaluated with
the grouper instance automatically. Each script
is like an anonymous function that will be called
with a grouper as argument. That function has
no return value but can trigger side effects via the
grouper’s interface, that is, creating and adding
groups of changes.

If there are already existing groups, developers
can inspect their contents and consider them. At
the beginning, there are as many groups as there
are changes. For each match in a script, that
change’s current group is fetched and the nested
structure of groups (Figure 3) is extended. The
following snippet extends the example above:

"..." [:change |

change property = ’SomeFilter’ ifTrue: [

group add: (

(grouper groupOf: change) -> ’Reason␣for␣

addition.’

)]]. "..."

To write effective scripts, developers need to
know about possible change properties and the
scripting language to write scripts. Here, filters
have the conciseness and expressiveness of the
Smalltalk language and are only limited by the en-
vironment’s loaded libraries. In particular, external
data sources may also be queried and their answers
used in such expressions. For example, one might
think of a library that supports connecting email
accounts with source code and hence reveal fur-
ther information about the original author of the

changed piece of code.
Thresher’s scripting capabilities can be summa-

rized like this: Scripts are high-level descriptions
of change characteristics and create or merge appro-
priate groups while using a grouper for navigation.
Different group classes represent distinct change
characteristics with an optional pivot change, which
is a dedicated change used for identification. For
example, a “class X renamed” change can be the
pivot change for subsequent code updates. Initially,
each change is in a single-change group. Arbitrary
changes can be put into a custom group. Groups
are units of reuse in scripts. A grouper supports
navigating changes in the current group hierarchy
and manages top-level groups across all scripts. It
is not meant to be extended. Recommendations
are created automatically if changes are associated
with two distinct groups.

To present a more elaborate example, the fol-
lowing script analyzes changes for method addi-
tions/removals and combines them with all other
method changes that update corresponding mes-
sage sends:

[:grouper |

grouper allChanges

select: [:change | change

isMethodAddOrRemove]

thenDo: [:pivot | | group |

group := MethodAddOrRemoveGroup new.

group add: (

(grouper groupOf: pivot) -> pivot name).

grouper methodChanges do: [:change |

"1) Check for removed methods."

pivot isRemoval &

(change isSendRemoved: pivot) ifTrue: [

group add: (

(grouper groupOf: change)

-> (’Send␣removed:’, pivot

selector)].

"2) Check for added methods."

pivot isAddition &

(change isSendAdded: pivot) ifTrue: [

group add: (

(grouper groupOf: change)

-> (’Send␣added:’, pivot

selector)]].

"Add new group to hierarchy."

grouper addGroup: group]].

Here, associations, which attach a textual de-
scription as reason to each change, are used to fill
groups with changes. Developers do not have to

Sanshusha pLATEX2ε: c01_taeumel : 2017/1/16(17:14)

Vol. 34 No. 1 Feb. 2017 111

provide reasons but debugging unexpected results
can benefit from such contextual explanations.

With only 19 lines of Smalltalk code, the devel-
oper can automate such an untangling of changes.
If existing changes are ungrouped, the grouper will
just create new groups. If they were already as-
signed to groups in preceding stages, Thresher
will handle conflict resolution and may add recom-
mendations because changes can only have a single
group. Developers do not have to deal with conflict
handling when writing scripts.

Scripts can also modify existing groups that were
created by previous stages. By default, scripts
do not modify previous decisions but add, merge,
or recommend new changes from emerging groups.
For example, two groups of the same kind such
as MethodAddOrRemoveGroup are usually merged and
not added as sub-groups. Eventually, top-level
groups are important for the developer because
those groups are meant to be committed.

Developers can add, remove, or edit Thresher’s
scripts whenever they want—even during a regu-
lar programming session. They can try out ideas,
keep the good ones, discard the useless ones. We
think that once the project domain and source code
conventions become clear developers do rarely have
to modify the existing scripts. Hence, scripting is
no ongoing activity in projects that make use of
Thresher. We expect the additional costs to learn
and use the scripting language to amortize quickly.

4. 4 Towards a Foundation of Scripts
We implemented a set of complementary scripts

that aim for detecting most characteristics as ex-
tracted from several programming sessions [33]. In
most cases, they use structural/code change infor-
mation but they may also consider chronological
affinity. These assumptions encode the Smalltalk
language characteristics besides Squeak’s change
model and hence serve as a valid baseline for
other projects in the Squeak/Smalltalk environ-
ment. Due to space constraints we cannot print all
scripts’ details here but will only summarize their
intents:

1. Consecutive grouping All consecutive
changes on the same source code artifact†9 are

†9 Source code artifacts can be packages, classes, or
methods.

grouped.
2. Refactoring grouping All changes that

were triggered by tool-driven refactorings are
grouped. Depends in respective hints being
present in the change data.

3. Renaming grouping Detects a manual or
tool-driven renaming of a source code artifact
and groups it with all consecutive changes of
the same kind. Affects also renamed variables.

4. Organizing grouping All consecutive
changes that reorganize software artifacts are
grouped. This includes class categories and
method protocols.

5. Added/removed-method grouping The
addition or removal of a method is grouped
with all changes that update the respective
message sends in the source code. Applies
static analysis to locate all sends.

6. Added/removed-variable grouping The
addition or removal of an instance/class vari-
able is grouped with all changes that update
the respective references in the source code.

7. Added/removed-class grouping The ad-
dition or removal of a class is grouped with all
changes that concern this class’ methods, vari-
ables, and references.

The last three stages add recommendations:
8. Close-to-artifact recommendation Single

changes are recommended to groups whose
changes affect the same artifact. Considers
chronological affinity.

9. Close-to-polymorphism recommenda-
tion Single changes are recommended to
groups that concern method additions/re-
movals but are ambiguous due to polymor-
phism. Considers chronological affinity.

10. Pretty-print recommendation Single
changes of cosmetic nature are recommended
to groups whose changes affect the same arti-
fact if chronological affinity is high. If there is
no such group, those changes are merged into a
new group. Such changes include modification
of whitespace or comments, renaming of tem-
poral variables, or cascading message sends.

With this focus on rules to combine rather than
split changes, these scripts do not detect activity
switches but rather describe continuations. From
one stage to another, scripts merge existing groups
of changes into bigger ones. Therefore, the or-

Sanshusha pLATEX2ε: c01_taeumel : 2017/1/16(17:14)

112 コンピュータソフトウェア

Fig. 5 The stages view in Thresher supports exploring intermediate results and
adapting the scripts.

der of scripts can influence the results. For now,
Thresher should stop processing if further merg-
ing might decrease coherence of groups. Splitting
up groups in scripts and hence describe activity
switches would be a valuable addition to our con-
cept and is considered future work.

5 Evaluation of Scripts
In this section, we evaluate the accuracy of the

basic scripts in Thresher, which we derived from
a programming study [33]. We then estimate the
manual effort that remains to complete the map-
ping of all changes to their activities—by interact-
ing with the tool’s graphical interface.

We have not yet evaluated to overall utility of
Thresher. To some extent, we rely on the pos-
itive effects of the Vivide programming environ-
ment [34], in which Thresher runs. This, how-
ever, remains subject to further research.

5. 1 Analyzing Programming Sessions
Our proposed scripts are based on sample

data, which Steinert et al. collected during a lab

study [33] with 22 developers that had the task to
improve source code of a game in 2-hour sessions.
The number of changes range from 40 to 250 per
session. We manually mapped those changes to ac-
tivities, which included debugging, refactoring, and
code clean-up. From this laborious activity, we
derived several scripts that should automate this
mapping process in terms of coherent groups of con-
secutive changes and which can be combined to as-
semble scattered change runs. Reconsider Figure 1
for the distinction of tangled and scattered changes.

In particular, we chose 5 out of the 22 sessions
as representatives because their changes contained
many refactorings or frequently interrupted activi-
ties with much tangling and many revisions; some
of them contained at least one larger refactoring.
We reviewed each fine-grained change manually
and added it to coherent, complete sets to get kind
of a gold standard for our analysis. Some developers
created their own commits with Monticello, which
we only partially took into account because at that
time, it forced them to commit all changes at once.
We did not interview the developers but were fa-

Sanshusha pLATEX2ε: c01_taeumel : 2017/1/16(17:14)

Vol. 34 No. 1 Feb. 2017 113

miliar with the domain of the game and its source
code. Eventually, we identified recurring character-
istics that indicate strong relationships or obvious
activity switches as summarized in Table 1. We
used the 6th data set to “simulate” a programming
session whose contents were not explicitly used to
derive those scripts.

5. 2 Precision, Recall, and Manual Effort
We quantify the accuracy of Thresher’s basic

scripts in terms of precision and recall, as known
from the domain of information retrieval [36]. The
result’s precision describes the percentage of true
positives, the result’s recall accounts for false neg-
atives. We describe the accuracy with sets of
changes to reflect the way Thresher works. In
addition to precision and recall, we quantify the
manual effort that is necessary to get an ideal re-
sult.

For the accuracy, we compare the expected set of
related changes with the calculated one. Let the ex-
pected groups be AE = {3, 5, 6} and BE = {1, 2, 4}
where digits indicate a change’s running number.
Let the calculated groups be AC = {3, 5}, BC =

{6}, and CC = {1, 2, 4}. The expected set of rela-
tions would be

E = {{1, 2}, {1, 4}, {2, 4}, {3, 5}, {3, 6}, {5, 6}}
and the calculated one would be

C = {{1, 2}, {1, 4}, {2, 4}, {3, 5}}
by expanding the groups into pair sets. The preci-
sion is now defined as P = |E ∩ C| / |C| and recall
as R = |E ∩ C| / |E|. In this example, precision is
1.0 (100%) and recall is 0.67 (67%), which indicates
that all calculated groups are coherent but manual
reviewing and merging is required for completion.

For the manual effort, we consider two extreme
cases: developers are either directly able to as-
sign changes to activities after reviewing them once
(min = 2·nchanges), or they have to look through all
changes for each activity again (max = nactivities ·
nchanges). When using Thresher, this effort is re-
duced because it depends on the number of pro-
posed groups instead of single changes. The de-
veloper clicks to accept/reject single recommenda-
tions or all at once. Drag-and-drop interactions can
merge groups or single changes.

5. 3 Results
We achieved a precision of 96% to 100% for our

five data sets as summarized in Table 2. Thus, we
met our goal of avoiding false-positives in groups by
favoring coherence over completeness in the scripts.

The upper part in the table shows information
about the session size by means of number of
changes and number of expected groups. The mid-
dle part shows the accuracy as described above. It
includes the number of calculated groups that ex-
actly match the expected commits and the number
of recommendations that should help reduce man-
ual effort. The lower part approximates the manual
effort including the minimal amount of click/drag-
and-drop actions in the user interface.

The recall indicates that 33% to 57% of the re-
lations, which express activity continuation, were
detected by our scripts. For the data set V, we sim-
ply adapted the script to increase recall; we expect
developers to do the same when facing many small
groups. Regarding the number of groups compared
to the expected commits, an expected commit is
roughly spread over two to three groups. Since
some commits were completely detected (see “#
Exact Matches”), other commits are spread over
more than three groups.

We explicitly counted the number of manual ac-
tions; this number can be approximated as two
times the number of expected commits because this
corresponds to the distribution of commits over
proposed groups. For some data sets this is even
less, which means that the given recommendations
help reduce manual effort. Notice that the devel-
oper could also accept or reject all recommenda-
tions for a particular group with a single click.

Programming session VI was analyzed to give a
first impression of the quality and reusability of
Thresher’s base scripts. We extracted patterns
from sessions I to V, which had to be adapted to
consider several corner cases in session V. A pre-
cision of 100% and a recall of 25% for session VI,
however, indicate a satisfying result without fur-
ther adaptation needed. The developer does only
have to assemble the proposed groups with the help
of recommendations and manual drag-and-drop in-
teractions.

Sanshusha pLATEX2ε: c01_taeumel : 2017/1/16(17:14)

114 コンピュータソフトウェア

Table 1 Characteristics that rendered data sets interesting for
deriving a foundation of scripts in Thresher.

Characteristics Data sets
Programming breaks between different refactorings (activity switch) I II IV
Changed statements for debugging output or breakpoints (to be ignored) I V
Consecutive changes in the same artifact I II III IV V
Consecutive renamings of artifacts including updates of their uses in the code IV
Consecutive reorganization of methods’ protocols I V VI
Changes of methods in different classes with shared protocol I III V VI
Similar patterns in identifiers of artifacts II III IV VI
Added/removed a method and update their uses I II III IV V VI
Added/removed an instance/class variable and update their uses I IV V VI
Added a class and initial methods/variables as well as initial uses I VI
Removed a class and update their uses I II III V VI

Table 2 Evaluation results comparing manual analysis (expected groups)
with the scripts of Thresher (calculated groups).
[* Scripts adapted for V due to low recall]

Data set I II III IV V V* VI
Number of Changes 121 57 39 74 157 157 211
Number of Expected Groups 8 5 6 7 4 4 4
Accuracy
Number of Calculated Groups 20 10 7 12 58 34 40
Number of Exact Matches 1 3 4 1 1 1 0
Number of Recommendations 20 4 2 21 32 31 22
Precision (%) 96 100 100 100 100 100 100
Recall (%) 35 43 57 35 1 33 25
Effort
Minimum Interactions 242 114 78 148 314 422

with Thresher 40 20 14 24 116 48 80
Maximum Interactions 968 285 234 518 628 - 844

with Thresher 160 50 42 84 232 96 160
Ratio (%) 17 18 18 16 37 15 19
Number of Manual Merge Actions 16 6 4 14 - 16 31

5. 4 Discussion and Threats to Validity
After the manual analysis of all changes, we con-

firmed that Thresher’s scripts cannot run fully
automated but developers have to intervene. One
could have expected even better results because
we designed the scripts to detect the groups as
found manually in the first place. Still, our evalu-
ation approach confirmed that even a simple set of
scripts can support developers in the commit pro-
cess. We argue that there can hardly be a fully-
automated approach that works without any hu-
man intervention. On the one hand, several deci-
sions rely on the developer’s insights in the partic-

ular domain and project, which were not material-
ized in the change data. On the other hand, our
scripts may not correctly reflect the characteristics
found. Although we cross-checked several charac-
teristics among us, there was not always consensus.
For example, there were several method extractions
across the code base and one of us argued to com-
bine them into a refactoring group but another one
would rather consider more domain-specific infor-
mation and split them apart. We found similar con-
clusions in [6] [11] [29]. Thresher is well suited to
interactively help developers to decide which par-
ticular characteristics to pursue and when to merge

Sanshusha pLATEX2ε: c01_taeumel : 2017/1/16(17:14)

Vol. 34 No. 1 Feb. 2017 115

proposed groups.
We derived the scripts and tool requirements

from only 5 programming sessions. Although
we found an arguably representative spectrum of
change characteristics for the Squeak/Smalltalk
programming environment, other sessions may con-
tain more special cases. As different kinds of activi-
ties influence the number and structure of changes,
we should analyze more sessions that do not mainly
deal with refactorings and bug fixing but also with
feature implementations like classified by Hattori
et al. [12]. Those could reveal further characteris-
tics [27] [38] such as more additions and less modi-
fications of methods.

The concept of recommendations accounts for
scripts’ interdependence; it helps developers ad-
just the proposed groups before committing them.
However, misleading recommendations may neg-
atively affect the coherence of a change set.
Thresher can miss to recommend the actually cor-
rect group; we have no means to prevent that.

Our scripts detect activity continuations rather
than switches and thus related changes rather than
checking for “unrelatedness”; which is undecid-
able [15]. This may be contrary to how developers
would manually select coherent change sets from a
chronologically ordered list of recent changes. Ad-
ditionally, our scripts do not cope with successive
activities but would merge them into a single one.
For example, the developer may rename methods as
a refactoring (A) and then use those to implement
a new feature (B succeeding A).

We reduced the implementation and computa-
tion effort of the scripts by prepending a static anal-
ysis of the methods’ source code to add useful infor-
mation such as changed references, variables, and
message sends. When implementing such a tool in a
different environment, the benefits of such caching
depends on the existing change model.

Our scripts only detect low-level relations be-
tween changes. Future work should include more
abstract characteristics such as design patterns [10]
as previously investigated by [17] [22]. Dynamic
analysis could also reveal interesting relations by,
for example, collecting concrete type informa-
tion [13] to be used in scripts.

Applicability to other object-oriented languages
and environments is straightforward because the
concept of classes and methods is reflected in many

of our scripts. Languages with fundamentally dif-
ferent concepts, such as logic programming, may
reveal quite different characteristics. The script-
ing language may also differ from the one used in
the programming environment, which was not the
case in Squeak/Smalltalk. We think that it is a
good idea to provide Thresher’s level of support
in other environments as well. Further research has
to reveal whether there are any drawbacks if one
has to design a custom scripting language for pro-
grammers to make the idea of Thresher feasible in
more static or closed environments such as Eclipse
or Visual Studio.

We could also apply Thresher directly to other
programming languages. For example, we can mod-
ify the scripts of Thresher to provide a level of
support comparable to Historef [14], which targets
files with Java source code. In general, there are
ways to provide language-agnostic tool support in
a Smalltalk environment because programming lan-
guages can be integrated as needed [7].

6 Hypotheses and Future Work
Based on our experience with implementing

Thresher in Squeak/Smalltalk and providing a
foundation of scripts based on the lab study [33],
we argue that this can only be the first step to-
wards a tool that supports developers in any kind of
software project. Our foundation of scripts as pre-
sented in Section 4. 4 has to be stress-tested with
additional data. At the time of writing, we derive
the following hypotheses:
• Given a foundation of scripts that consid-

ers a particular programming language and its
change model, developers will rarely have to
adapt those scripts except for project-specific
needs.

• If developers are knowledgeable about the
scripting capabilities in such a commit tool,
they are more likely to improve their personal
workflow by taking advantage of that.

• If developers adapt such scripts for project-
specific needs, they will make fewer mistakes
and save time during the commit process.

Besides running experiments to test those hy-
potheses, we are eager to improve the general idea
of how fine-granular changes might be combined
into coherent and complete groups. In addition

Sanshusha pLATEX2ε: c01_taeumel : 2017/1/16(17:14)

116 コンピュータソフトウェア

to describing the continuity of activities between
changes, we think that it is important to also split
up bigger groups to indicate activity switches and
thus separate commits. Finally, expressing rules of
dependency relationships in scripts is valuable so
that the correct commit order of change sets can
be ensured, too.

Furthermore, we want to try out visualizations
based on structures other than lists, tables, or
trees. For example, recommendations across group
boundaries might be better displayed with a graph
similar to Figure 3. Finally, we have to general-
ize our scripting approach to other programming
systems and their change models. File-based mod-
els, for example, may reveal different traits than
object-based ones.

For all these improvements, we see a need for data
from programming sessions that go beyond simple
refactoring tasks such as adding features or fixing
bugs. Only then, we can establish a useful scripting
interface to support programmers to accommodate
project-specific requirements.

7 Conclusion
We presented Thresher, a scriptable, interac-

tive, graphical tool that developers can use af-
ter programming sessions to identify coherent and
complete sets of fine-granular changes to be com-
mitted to a vcs. A foundation of scripts automat-
ically detects related changes that indicate activ-
ity continuations; developers then manually assem-
ble those scattered groups into complete activity
descriptions. We argue that it is very important
to involve the actual developer into this process
because there is much tacit knowledge about the
project and its domain that cannot be manifested
in code or change structures.

We showed that our foundation of scripts propose
groups with a precision of almost 100% indicating
that developers can rely on their coherence and fo-
cus on adjusting their completeness with respect to
an activity. We argue that such tool support pro-
motes the usage of fine-granular changes, which is
beneficial for explorative programming strategies—
omitting explicit checkpoints—and detailed track-
ing of project histories.

Acknowledgments
We wish to thank Jens Lincke, Lena Herscheid,

Lysann Schlegel, Mark Rooney, Marko Röder, and
Philipp Tessenow for fruitful discussions and valu-
able feedback. We gratefully acknowledge the fi-
nancial support of HPI’s Research School†10 and
the Hasso Plattner Design Thinking Research Pro-
gram.†11

References

[1] Barnett, M., Bird, C., Brunet, J. and Lahiri,
S. K.: Helping developers help themselves: Auto-
matic decomposition of code review changesets, in
Proceeding of the 37rd International Conference on
Software Engineering (ICSE), ACM/IEEE, 2015.

[2] Boehm, B. W.: The high cost of software, Prac-
tical Strategies for Developing Large Software Sys-
tems, (1975), pp. 3–15.

[3] Bohner, S. A. and Arnold, R. S.: Software
Change Impact Analysis, John Wiley & Sons, 1996.

[4] Borg, M. and Runeson, P.: Changes, evolution,
and bugs: Recommendation systems for issue man-
agement, in Recommendation systems in software
engineering, Springer, 2014, pp. 477–509.

[5] Buse, R. P. L. and Weimer, W. R.: Automat-
ically documenting program changes, in Proceed-
ings of the 25th International Conference on Au-
tomated Software Engineering (ASE), IEEE/ACM,
2010, pp. 33–42.

[6] Coman, I. D. and Sillitti, A.: Automated iden-
tification of tasks in development sessions, in Pro-
ceedings of the 16th IEEE International Conference
on Program Comprehension (ICPC), IEEE, 2008,
pp. 212–217.

[7] Stéphane, D., Gîrba, T., Lanza, M. and Demeyer
Moose, S.: : A collaborative and extensible reegi-
neering environment, in Tools for Software Mainte-
nance and Reengineering (RCOST), Software Tech-
nology Series, 2005.

[8] Duvall, P. M., Matyas, S. and Glover, A.: Con-
tinuous integration: Improving software quality and
reducing risk, Pearson Education, 2007.

[9] Gabriel, R. P.: I Throw Itching Powder at Tulips,
in Proceedings of the ACM Symposium for New
Ideas, New Paradigms, and Reflections on Every-
thing to do with Programming and Software (On-
ward!), ACM, 2014, pp. 301–319.

[10] Gamma, E., Helm, R., Johnson, R. and Vlis-
sides, J.: Design patterns: Elements of reusable
object-oriented software, Pearson Education, 1994.

[11] Gold, N. and Mohan, A.: A framework for un-

†10 www.hpi.uni-potsdam.de/research_school
†11 www.hpi.de/en/research/design-thinking-

research-program

Sanshusha pLATEX2ε: c01_taeumel : 2017/1/16(17:14)

Vol. 34 No. 1 Feb. 2017 117

derstanding conceptual changes in evolving source
code, in Proceedings of the 19th International Con-
ference on Software Maintenance (ICSM), IEEE,
2003, pp. 431–439.

[12] Hattori, L. P. and Lanza, M.: On the na-
ture of commits, in Proceedings of the 23rd Inter-
national Conference on Automated Software Engi-
neering Workshops, 2008, pp. 63–71.

[13] Haupt, M., Perscheid, M. and Hirschfeld, R.:
Type harvesting: A practical approach to obtaining
typing information in dynamic programming lan-
guages, in Proceedings of the 2011 Symposium on
Applied Computing (SAC), ACM, 2011, pp. 1282–
1289.

[14] Hayashi, S., Hoshino, D., Matsuda, J., Saeki,
M., Omori, T. and Maruyama, K.: Historef: A tool
for edit history refactoring, in Proceedings of the
22nd International Conference on Software Analy-
sis, Evolution, and Reengineering (SANER), IEEE,
2015, pp. 469–473.

[15] Herzig, K. and Zeller, A.: Untangling changes.
Unpublished manuscript, September, 2011. http:
//www.st.cs.uni-saarland.de/publications/files/
herzig-tmp-2011.pdf, accessed: July 1, 2014.

[16] Herzig, K. and Zeller, A.: The impact of tangled
code changes, in Proceedings of the 10th Interna-
tional Workshop on Mining Software Repositories
(MSR), IEEE, 2013, pp. 121–130.

[17] Heuzeroth, D., Holl, T., Hogstrom, G. and
Lowe, W.: Automatic design pattern detection,
in Proceedings of the 11th International Workshop
on Program Comprehension (IWPC), IEEE, 2003,
pp. 94–103.

[18] Kawrykow, D. and Robillard, M. P.: Non-
essential changes in version histories, in Proceedings
of the 33rd International Conference on Software
Engineering (ICSE), ACM/IEEE, 2011, p. 351.

[19] Kersten, M. and Murphy, G. C.: Mylar: A
Degree-of-Interest Model for IDEs, in Proceed-
ings of the 4th International Conference on Aspect-
oriented Software Development (AOSD), ACM,
2005, pp. 159–168.

[20] Kim, M. and Notkin, D.: Discovering and rep-
resenting systematic code changes, in Proceedings
of the 31st International Conference on Software
Engineering (ICSE), IEEE, 2009, pp. 309–319.

[21] Ko, A. J., DeLine, R. and Venolia, G.: In-
formation Needs in Collocated Software Develop-
ment Teams, in Proceedings of the 29th Interna-
tional Conference on Software Engineering (ICSE),
ACM/IEEE, 2007, pp. 344–353.

[22] Kramer, C. and Prechelt, L.: Design recovery
by automated search for structural design patterns
in object-oriented software, in Proceedings of the
3rd Working Conference on Reverse Engineering
(WCRE), IEEE, 1996, pp. 208–215.

[23] Kuhn, A. and Stocker, M.: CodeTimeline:
Storytelling with Versioning Data, in Interna-

tional Conference on Software Engineering (ICSE),
IEEE/ACM, 2012, pp. 1333–1336.

[24] Meyer, A., Fritz, T., Murphy, G. C. and Zim-
mermann, T.: Software Developers’ Perceptions of
Productivity, SIGSOFT FSE, ACM, 2014.

[25] Murphy, G. C., Kersten, M., Robillard, M. and
Cubranic, D.: the emergent structure of develop-
ment tasks, in Proceedings of the European Con-
ference on Object-oriented Programming (ECOOP),
Springer, 2005, pp. 734–749.

[26] Robbes, R. and Lanza, M.: A change-based
approach to software evolution, Electronic Notes
in Theoretical Computer Science, Vol. 166 (2007),
pp. 93–109.

[27] Robbes, R. and Lanza, M.: Characterizing and
understanding development sessions, in Proceedings
of the 15th International Conference on Program
Comprehension (ICPC), IEEE, 2007.

[28] Robbes, R., Pollet, D. and Lanza, M.: Logical
coupling based on fine-grained change information,
in Proceedings of the 15th Working Conference on
Reverse Engineering (WCRE), IEEE, 2008, pp. 42–
46.

[29] Robillard, M. P., Coelho, W. and Murphy, G. C.:
How effective developers investigate source code:
An exploratory study, IEEE Transactions on Soft-
ware Engineering, Vol. 30, No. 12 (2004), pp. 889–
903.

[30] Sandberg, D. W.: Smalltalk and exploratory
programming, ACM SIGPLAN Notices, Vol. 23,
No. 10 (1988), pp. 85–92.

[31] Sheil, B.: Environments for exploratory pro-
gramming, Datamation, Vol. 29, No. 7 (1983),
pp. 131–144.

[32] Steinert, B., Cassou, D. and Hirschfeld, R.:
CoExist: Overcoming aversion to change - Preserv-
ing immediate access to source code and run-time
information of previous development states, in Pro-
ceedings of the 8th Symposium on Dynamic lan-
guages (DLS), ACM, 2012, pp. 107–118.

[33] Steinert, B. and Hirschfeld, R.: How to com-
pare performance in program design activities: To-
wards an empirical evaluation of CoExist, in De-
sign Thinking Research: Understanding Innova-
tion, Springer, 2014, pp. 219–238.

[34] Taeumel, M., Perscheid, M., Steinert, B., Lincke,
J. and Hirschfeld, R.: Interleaving of Modifica-
tion and Use in Data-driven Tool Development,
in Proceedings of the ACM Symposium for New
Ideas, New Paradigms, and Reflections on Every-
thing to do with Programming and Software (On-
ward!), ACM, 2014, pp. 185–200.

[35] Tao, Y., Dang, Y., Xie, T., Zhang, D. and Kim,
S.: How do software engineers understand code
changes?: An exploratory study in industry, in Pro-
ceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engi-
neering, ACM, 2012, p. 51.

Sanshusha pLATEX2ε: c01_taeumel : 2017/1/16(17:14)

118 コンピュータソフトウェア

[36] van Rijsbergen, C. J.: Information retrieval
(second edition), Butterworths, 1979.

[37] von Mayrhauser, A. and Vans, A. M.: Pro-
gram comprehension during software maintenance
and evolution. Computer (IEEE), Vol. 28, No. 8
(1995), pp. 44–55.

[38] Williams, B. J. and Carver, J. C.: Charac-
terizing software architecture changes: A system-
atic review, Information and Software Technology,
Vol. 52, No. 1 (2010), pp. 31–51.

[39] Yoon, Y. S. and Myers, B. A.: Capturing
and Analyzing Low-Level Events from the Code
Editor, in International Workshop on Evaluation
and Usability of Programming Languages and Tools
(PLATEAU), 2011, pp. 25–30.

[40] Yoon, Y. S., Myers, B. A. and Koo, S.: Vi-
sualization of Fine-grained Code Change History,
in Proceedings of the 2013 IEEE Symposium on
Visual Languages and Human-centric Computing
(VL/HCC), IEEE, 2013, pp. 119–126.

[41] Zou, L. and Godfrey, M. W.: An industrial case
study of Coman’s automated task detection algo-
rithm: What worked, what didn’t, and why, in
Proceedings of the 28th International Conference on
Software Maintenance (ICSM), IEEE, 2012, pp.6–
14.

Marcel Taeumel

Marcel Taeumel (marcel.taeumel@
hpi.de) is a Research Assistant in
the Software Architecture Group at
the Hasso-Plattner-Institute (HPI).
He received a master’s degree in

Software Engineering from the Hasso-Plattner-
Institute, University of Potsdam, Germany. See
also http://marcel.taeumel.eu.

Stephanie Platz

Stephanie Platz (stephanie.platz@
student.hpi.de) is a Software Engi-
neer at MarleySpoon GmbH, Ger-
many. She received a master’s de-
gree in Software Engineering from

the Hasso-Plattner-Institute, University of Pots-
dam, Germany.

Bastian Steinert

Bastian Steinert (bastian.steinert@
gmail.com) is a Product Man-
ager at Signavio GmbH, Germany.
He received a Ph.D. in Computer
Science from the Hasso-Plattner-

Institute, University of Potsdam, Germany. See
also http://www.bastiansteinert.org.

Robert Hirschfeld

Robert Hirschfeld (robert.hirschfeld
@hpi.de) is a Professor of Computer
Science at the Hasso-Plattner-
Institute (HPI) at the University
of Potsdam, Germany. He received

a Ph.D. in Computer Science from the Technical
University of Ilmenau, Germany. See also http:
//www.hpi.uni-potsdam.de/swa.

Hidehiko Masuhara

Hidehiko Masuhara (masuhara@
acm.org) is a professor at the
Department of Mathematical and
Computing Science, Tokyo Insti-
tute of Technology. He received his

B.Sc., M.Sc., and Ph.D degrees from Department of
Information Science, University of Tokyo in 1992,
1994, and 1999, respectively. His research inter-
est is in programming languages and programming
environments, especially advanced modularization
mechanisms, optimization techniques, code recom-
mendations, and debuggers. Before joining Tokyo
Institute of Technology, he worked as an assistant
professor, a lecturer, and an associate professor at
Graduate School of Arts and Sciences, the Univer-
sity of Tokyo.

