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Abstract In 1997, Henry Lieberman stated that debugging is the dirty little
secret of computer science. Since then, several promising debugging technolo-
gies have been developed such as back-in-time debuggers and automatic fault
localization methods. However, the last study about the state-of-the-art in de-
bugging is still more than 15 years old and so it is not clear whether these new
approaches have been applied in practice or not.

For that reason, we investigate the current state of debugging in a compre-
hensive study. First, we review the available literature and learn about current
approaches and study results. Second, we observe several professional devel-
opers while debugging and interview them about their experiences. Third, we
create a questionnaire that serves as the basis for a larger online debugging
survey. Based on these results, we present new insights into debugging practice
that help to suggest new directions for future research.

Keywords Debugging · Literature review · Field study · Online survey

1 Introduction

“Debugging is twice as hard as writing the program in the first place” [23].
This quote of Brian W. Kernighan illustrates a problem every software devel-
oper has to face. Debugging software is difficult and, therefore, takes a long
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time, often more than creating it [42]. When debugging, developers have to
find a way to relate an observable failure to the causing defect in the source
code. While this is easy to say, the distance from defect to failure may be long
in both time and space. Developers need a deep understanding of the soft-
ware system and its environment to be able to follow the infection chain back
to its root cause. While modern debuggers can aid developers in gathering
information about the system, they can not relieve them of the selection of
relevant information and the reasoning. Debugging remains a challenging task
demanding much time and effort.

Several researchers, educators, and experienced professionals have tried to
improve our understanding of the knowledge and activities included in de-
bugging programs. The earliest studies trying to understand how debugging
works date as far back as 1974 [13]. In the following years, debugging tools
have been improved and the lack of knowledge has been tackled. However,
more than 20 years later Henry Lieberman had to say that “Debugging is still,
as it was 30 years ago, largely a matter of trial and error.” [28]. Also, a more
recent survey from 2008 still indicates that debugging is seen as problematic
and inefficient in professional context as ever [7]. The main reasons seem to be
aged debugging tools and a lack of knowledge of modern debugging methods.
Since that time, researchers proposed still more advanced debugging tools and
methods [42]. For example, back-in-time debuggers [26] that allow develop-
ers to follow infection chains back to their root causes or multiple automatic
fault localization methods [39] that automatically highlight faulty statements
in programs. Nevertheless, so far it is not clear whether the current advance-
ment in research has already improved the situation in practice or not. For
that reason, we state our research question as follows:

Have professional software developers changed their way of debugging
by using recent achievements in debugging technology?

We aim to answer this question by studying debugging in the field—
observing the number of bugs, the time of detection, and the effort to fix
them. First, we started with a comprehensive literature review that revealed
current debugging trends and existing study results. After that, we visited four
software companies in Germany and interviewed a total of eight developers.
With these results, we got first insights into current debugging practices and
derived a systematic questionnaire that has been answered in a larger online
survey. The contributions of this paper are:

– Review of the available literature on studies on debugging behavior
– A field study in four companies with eight developers in order to learn

about their debugging habits
– Deriving a questionnaire and conducting an online survey in order to reveal

current debugging practices and propose further research directions

Compared to the previous version of this paper as presented at the Fifth
International Workshop on Program Debugging (IWPD 2014), we include the
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results of our online survey and infer promising directions for the future of
debugging.

The remainder of this paper is structured as follows: Section 2 gives more
details on our literature review. Section 3 explains the design of our field study
and presents its results. Section 4 describes the questions of our online survey,
discusses the answers, and proposes possible research directions. Section 5
concludes.

2 Literature Review

The earliest study of debugging behavior dates as far back as 1974. Gould and
Drongowski [13] conducted a lab study with 30 participants. Each participant
was given a printed Fortran source code and varying additional information.
They then had to find an artificially inserted bug in that source code. Due
to the limitations of the time, the developers could not execute the program.
Nevertheless, the authors observed similarities amongst all developers: they
scanned the code for usual suspects before trying to actually understand its
behavior.

A year later, the same authors studied developers equipped with a symbolic
debugger [12]. While the use of the debugger did not improve but lengthen the
debugging times, this was attributed to distorting factors. It was only used for
bugs that were to hard to solve without and the programs used were short
and with a linear flow of control. The authors formulated a “gross descriptive
model of debugging” which consisted of an repeated iteration of three steps:

1. Select a debugging tactic
2. Try to find a clue
3. Generate a hypothesis based on the clue if any

This was also the first time that evidence had been found for backwards rea-
soning from observable failure to root cause.

In 1982, Weiser introduced the notion of program slicing [38]. Developers
debugged one of three Algol-W programs that contained an artificially in-
serted bug and were afterwards asked to identify statements taken from that
program. The results showed that programmers could remember statements
that influenced or were influenced by the statement containing the bug better
than unrelated statements.

In 1985, Vessey found evidence that programming experts and novices
differ in their debugging strategies [37]. She found out that experts are more
flexible in choosing their tactics and develop an overall program understanding.
Novices who lack that understanding are often constrained by their initial
tactic and hypothesis, even if both turned out to be not useful.

In 1997, Eisenstadt [11] collected 59 bug anecdotes from experts and pro-
posed a three dimensional classification of bug stories:

1. The reason, why the bug was difficult.
2. The type of the root cause identified.
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3. The most useful technique used to find the root cause.

He then identified two main sources for difficult bugs: large gaps between root
cause and failure and bugs that render tools inapplicable. The results also
showed that these bugs can be solved by gathering and examining additional
runtime data.

Since 2000, many researchers have tried to improve the understanding of
specific aspects of debugging [3,8,16–18,24–26,31], but these focus mostly on
the introduction of new tools or how debugging can be taught to students.
For example, there have been multiple approaches to automate parts of the
fault localization process [2,4–6,9,10,15,19–22,27,29,32,36,40,41,43], a cate-
gorization and overview can be found in [39]. Moreover, a complete discussion
of current debugging approaches can be found in [35].

Many software developers have also tried to create a guideline that can
help other troubled developers improve their debugging skills and reduce time
and effort spent on debugging in favor of developing new features. Some of
these discussions resulted in debugging guides published as books.

“Debugging: The 9 Indispensable Rules for Finding Even the Most Elusive
Software and Hardware Problems” [1] was one of the first general purpose
debugging books. It teaches general strategies and how to apply them to real
life bug stories by example.

“Debugging by Thinking” [30] relates debugging with other domains of
problem solving and tries to apply their methods. It also provides a list of
debugging strategies, heuristics and tactics, each with a detailed instruction
how and when it can be applied.

“The Developer’s Guide to Debugging” [14] teaches techniques to solve
specific types of problems, that are usually very challenging. It exemplifies
them using GDB, Visual Studio and other Tools applicable to C and C++.

“Why Programs Fail” [42] introduces the reader to the infection chain and
how the knowledge of its existence can help in debugging and bug prevention.
It teaches formal processes for testing, problem reproduction, problem sim-
plification and actual debugging. It promotes Scientific Debugging, a debug-
ging method based on the scientific method of generating theories. It involves
repeatedly formulating hypotheses, planning and executing experiments for
verification, and refining hypotheses until the root cause is found.

In the last years, we have seen many new debugging tools and methods.
However, to the best of our knowledge, the latest general purpose debugging
study amongst professional software developers is more than 15 years old [11].
For that reason, we argue that it is necessary to update our knowledge about
professional software debugging to know which problems are still open and
which should be solved next.

3 Field Study

This section explains the setup and results of our field study. The goal was
to get an impression of professional debugging in modern software companies.
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Table 1 Relevant characteristics of the four companies visited in the field study

# Employees # Developers # Observed Team Size Process

A 300 50 3 7
Scrum

3 week sprints

B 25 15 2 5 Kanban

C 150 60 1 5 Kanban

D 5 3 2 5
Scrum

weekly sprints

Table 2 Used technologies and tools of the four visited companies

Used Technologies Used Tools

A
Java EE, Hibernate, JUnit,

JSF, ANT, JBoss, Tomcat

Jira, Jenkins, Git,

Eclipse, PL/SQL Developer

B
Java, ANT, JUnit, Tomcat, XML, SVG,

JavaScript, NodeJS, Grunt, Jasmine, Karma

Jira, Jenkins, Git, Eclipse,

Sublime Text, Chrome DevTools

C
Java EE, ANT, Sonar, Tomcat,

Morphia, JSON, MongoDB
Jira, Jenkins, Git, Eclipse

D
PHP, Zend, Propel, MySQL, New Relic,

JavaScript, XHTML, JQuery

Jira, Hudson, Git, Sublime Text,

Chrome DevTools, PHPStorm, Apache

This impression was necessary to decide which questions might produce in-
teresting insights. To get that impression, we decided to visit companies and
observe developers during a normal workday. We contacted many companies
on a university relation fair and were able to convince four of them to help us.

3.1 Experimental Setup

We visited four software companies in Germany varying in size from five to
several hundred employees. All four companies are creating web applications,
some self hosted and some licensed. We could follow eight developers through
the course of their day and observe their methods. We asked each developer
to think aloud so we could get an impression of their methods. At the end of
each visit, we asked each developer to describe his overall process himself. We
also asked if they knew modern tools such as back-in-time debuggers and if
they deemed them useful.

An overview of the relevant characteristics of each company is given in
Table 1 and 2. For each company, it shows the number of employees, the
number of software developers, the number of developers we observed, and
the usual size of teams in that company, as well as the development process
they used, the technology they built upon, and the tools they applied. These
lists are not exhaustive but rather show the tools and technologies we could
see during our visits. In addition to that data, it is worth noting that the third
company is part of a larger Web-oriented enterprise.
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Table 3 Relevant characteristics of the eight participants (#) of the field study

# Company Age Gender Degree

1. A 40 male Diploma in Engineering

2. A 26 male Master in Computer Science

3. A 31 male Bachelor in Computer Science

4. B 27 male Master in IT-Systems-Engineering

5. B 28 male Master in Engineering

6. C 30 male Master in Computer Science

7. D 27 male
Bachelor in Artificial Intelligence

and Computer Science

8. D 34 male
Bachelor in Computer Science

Certified IT-Specialist

Table 4 Experience and position of participants (#)

# Experience Position

1.

8 years freelance web development

3 years web front-end development

1 year back-end development

Java back-end developer

2. 2 years back-end development Java back-end developer

3. 5 years back-end development Java back-end developer

4.
6 years miscellaneous

1 year JavaScript development
Developing a JavaScript graphics library

5. 2 years back-end development Java back-end developer

6. 7 years back-end development Java back-end developer

7. 4 years front-end development Web front-end developer

8.
15 years miscellaneous

one year back-end development
PHP back-end developer

Table 3 and 4 show an overview of the relevant characteristics of the in-
dividual participants. We asked for their age, gender, and highest educational
degree. We also noted their experience in software development and current
position.

3.2 Study Results

3.2.1 Company A

The development process of the first company includes a mandatory code re-
view for each feature or fix. Each team had a dedicated quality assurance
employee, who performs manual and automated integration and acceptance
tests. They also regularly execute automated unit tests written by the devel-
opers themselves.



Studying the Advancement in Debugging Practice 7

The first developer we observed uses full-text search and the search-for-
class utilities of the Eclipse IDE to navigate the source code. When confronted
with unexpected behavior, he first checks which code was recently modified
and therefore might probably contain the fault. He then sets breakpoints at
key locations of the program flow to interrupt the program and check the pro-
gram state. Checking database contents required a separate tool. Interrupting
the program to check its state is also a preventive instrument to him, when
new code is complex or uses unfamiliar interfaces. He is not aware of any stan-
dard approach, but his approach can be classified as scientific debugging [42]
without taking notes, as he formulates hypotheses and then checks these by
experiment.

The second developers’ source code navigation methods of choice are the
search-for-class, jump-to-implementation, and find-callers utilities of the Eclipse
IDE. When debugging, he makes sure to work on the exact same Git branch
the bug was found on to eliminate possible version dependencies. He then in-
spects the latest changes on that branch utilizing the capabilities of git to show
differences between commits. Explaining his approach is as hard to him as to
the first developer, but he also follows a simple version of scientific debugging,
setting breakpoints to inspect the program state to verify assumptions. He
calls this an “intuitive method”. When testing hypotheses the hot recompile
capabilities of Java proved allowed him to change the code at runtime and
proceed in a trial and error fashion until understanding the problem.

When we visited the company, the third developer had to find the cause
of a dependency conflict. A class included in multiple libraries was delivered
in different, not compatible versions. To find out which jar files included the
class, he first inspected the state of the Java Runtime Environment using
print statements to get a list of all jar files actually loaded. He then used the
command line tool grep to check the content of these files for the conflicting
class. After spending a reasonable amount of time and effort this way, he
postponed the fix and planned to improve the overall dependency management
instead. This also meant postponing tasks depending on a new library that
introduced the conflicts.

3.2.2 Company B

The development process of the second company includes a mandatory code
review for each feature or fix. Following test-driven development, the general
process for new features includes an automated “happy case” test written
upfront and automated edge case tests written after or while implementing.
Bug reports were created on GitHub, either by a customer or by support
employees. If the bug is simple, support employees fix it themselves, but most
problems are only reproduced by support and fixed by developers. Some cases
cannot be reproduced because of third party systems the customer uses. In
that case, support employees try to help with diagnosis until the problem is
either solved or can be reproduced using substitutes.
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The first participant in this company uses mainly full text search or a search
for symbols provided by Sublime Text to navigate the code. New automated
test cases mark the beginning of each of his debugging sessions. At this point,
he usually has a first hypothesis, that can be tested by setting breakpoints at
relevant locations and inspecting the program state. To gather more data, he
uses the interactive console of the Google Chrome development tools to explore
objects and APIs. When examining the program flow, he makes extensive
use of stepping and the “restart frame” functionality of the Google Chrome
debugger. At one instance, he refactored the program and ran his test suite
again to verify his internal model of the program.

The other developers’ source code navigation tools are full text search and
many of the navigation utilities provided by the Eclipse IDE. He follows a
simple debugging philosophy called “Test it, don’t guess it”, which can be
seen as a simplified version of scientific debugging. When confronted with a
runtime exception he reads the stack trace provided very carefully to identify
the relevant classes and methods, proceeding by setting breakpoints, stepping
through the program, and inspecting the program state to verify hypotheses.
When needing backwards navigation he uses Eclipses “Drop to Frame” utility
where applicable.

3.2.3 Company C

The development process of the third company includes mandatory code re-
view for each new feature or fix. There is a separate quality assurance depart-
ment that performs automated as well as manual testing. Unit tests written
by the developers themselves complement the test suite.

We observed only one developer in this company. To navigate the source
code, he uses full-text search as well as the navigation utilities provided by
Eclipse. His general debugging approach usually starts at the beginning of a
relevant use case, stepping into the program and inspecting variables to get an
impression of the program and data flow. He then starts setting breakpoints
at relevant locations and testing hypotheses. Exception breakpoints, capturing
all exceptions, even if caught by the program, provide him with further data.
When inspecting complex objects, he sometimes writes a custom toString()
method to aid the investigation.

3.2.4 Company D

The development process of the fourth company includes an optional code
review and automated unit tests. The review is not mandatory because they
deem the slow down too heavy for a start-up needing to evolve quickly. A beta
tester group of users reports bugs unnoticed by the developers themselves.

The front-end developer uses only full-text search and search for files by
name to navigate the source code. When debugging, his first step is reading
recent source code, checking it for obvious mistakes. He then uses the Google
Chrome debugger to set breakpoints, step through the program and inspect
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variables, using the interactive console to explore objects and APIs. When
working with the (X)HTML document, he uses the inspector to examine the
results of the code.

The back-end developers’ code navigation tools are full-text search, manual
folder navigation and the “find implementers” and “find callers” utilities of
the PHPStorm IDE. When working on a bug report, he first examines the
logs of the New Relic monitoring system to get a impression of the system
parts involved, proceeding by setting breakpoints and examining the program
state and flow to test hypotheses. He also compares the defective modules to
working ones which employ the same patterns and use the same APIs to check
for differences.

3.3 General Findings

While the level of education and amount of practical experience varies among
the developers, all reported that they were never trained in debugging. They
learned debugging either by doing or from demonstration by colleagues. Not
surprisingly, they have difficulties describing their approach. While they can
speak about development processes in general on an abstract level, they resort
to showing and examples when speaking about debugging.

All developers use a simplified scientific method, although they did not
describe it using that name. They formulate hypotheses about the program
and then set up simple experiments to verify them. They do neither take notes
nor mark their results in the source code, though. This might be a hint that
scientific debugging is a way of thought that comes easy to most developers.
Some developers allowed us to see how they formed their initial hypotheses.
They use stack traces, log files and review the code to identify related modules,
classes, and methods. They then use their system knowledge and reference
material to identify suspicious code in these parts of the program. Others were
able to formulate an initial hypothesis just after reading the bug report. This
is probably due to different levels of difficulty of the bugs they encountered
and also their knowledge about the system.

All participants are proficient in using symbolic debuggers. They also prefer
them to the use of log statements, because debuggers allow for additional
inspections without the need to restart the program. Only a few developers
claim that they are aware of all features of their IDE or debugger, though.
Unknown features include “Drop to Frame” or “Restart Frame”, conditional
breakpoints, and various kinds of special breakpoints.

No subject had known back-in-time debuggers before. All of them question
the usefulness of back-stepping by deeming it sufficient to set a breakpoint
earlier in the program and rerun the test. A back-in-time debugger is only
considered useful if it has only a very small overhead and memory footprint
when compared to a regular debugger.

Automatic fault localization was also unknown, but the suspects deem it
more useful, depending on the analysis runtime and difficulty of the debugging
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session. They consider running an analysis overnight to localize a bug that
could not be found till the end of a workday a viable option.

3.4 Threats to Validity

The results of this field study can not be generalized. The main concern is
the small scale. Eight developers are not enough to rule out statistical anoma-
lies, the same goes for four companies. Another concern is the limited time
span. Each developer was only observed for some hours during one workday.
This results in a limited sample of problems they might encounter during day
to day work limiting the observed methods and approaches. Furthermore all
companies created web applications, which may or may not result in a similar
company culture. Nevertheless, these interviews provide meaningful insights
that helped us design our debugging questionnaire.

4 Online Survey

While our field study provided a first idea of the debugging habits in modern
software companies, it is unreasonable to use it to formulate meaningful re-
sults. To achieve a useful certainty, we needed a larger sample. However, it was
unfeasible to visit hundreds of developers and observe them. An easier way is
using a questionnaire that can be filled in online. With such a questionnaire, we
can reach a large number of people and process the results statistically. So, we
can find and describe relations between different characteristics of professional
software debugging. This section summarizes the questionnaire, describes the
experimental setup, details our findings, and proposes further research direc-
tions.

4.1 Formulating the Questionnaire

To consolidate and expand our results with reliable statistic data we are per-
forming an online survey. Based on the results of our field study, we formulated
a broad spectrum of debugging questions:

4.1.1 Background Information

At the beginning of the survey, we collect some background information,
namely age, gender, degree, development experience, the size of the companies
the participants work for, and the programming languages they use.
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4.1.2 Education

We want to study the spread of education on debugging, because the field
study indicated it as uncommon. To this end, we ask the participants if they
got any debugging education and when that was. We also ask if they have read
any literature on debugging methods.

4.1.3 Debugging Tools

Because modern tools are largely unknown to the participants in the field
study, the questionnaire asks which tools developers know and which they
use for debugging. We divide debugging tools into 13 categories: printing and
logging, assertions and Design by Contract, symbolic debuggers, back in time
debuggers, generated likely invariants, program slicing, slice based fault local-
ization, spectrum based fault localization, statistics based fault localization,
program state based fault localization, machine learning based fault local-
ization, model based fault localization, and data mining based fault local-
ization. The distinction of the automatic fault localization methods is taken
from Wong [39]. We also ask how much developers value different aspects of
new debugging tools. The available aspects are features, overhead or runtime,
IDE integration, easy installation, easy to use, and available documentation
or support.

4.1.4 Workload

We then try to assess the participants debugging workload by asking how much
of their time they spend debugging and how many bugs of different difficulties
they encounter. We also ask them to estimate if the difficulty of debugging has
changed in the last years or will change in the next.

4.1.5 Hardest Bug

As difficult bugs often enable deeper insights into the developers approach, we
include some questions on the hardest bug the participants had to face. We
ask them to position it in all three dimensions of a bug war story as defined by
Eisenstadt [11]: The type of the bug, why it was especially hard to debug, and
what technique turned out to be the most helpful to find it. Early tests have
shown that many of the bugs remembered as the hardest are due to parallel
execution and do not fit in the existing categories. Therefore, we added the
category of parallel problem to the root cause dimension. We also ask how
long it took to fix the bug, if fixed at all.

4.1.6 Learning from Past Bugs

Bug histories of a project can identify problems in the development process
and help to fix future bugs faster. Therefore, we ask the participants if they
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keep a log of fixed bugs, if they add solutions to their log, and if they use it
to learn from past mistakes.

4.1.7 Bug Prevention

We also want to get an idea of the relation between bug prevention, the re-
maining bugs, and how they are tackled. Therefore, we include questions in the
survey to assess what type of automated tests and analysis the participants
perform.

With all these questions, we hope to find out to what extent the advance-
ments in the debugging technology have entered the field of professional soft-
ware development. We want to assess what factors influence the adoption of
new tools or methods and what directions future research and education should
take to further improve developers’ debugging abilities.

4.2 Experimental Setup

To get as many answers as possible, we made the survey available publicly and
sent the link to as many people as possible using different channels. First, we
sent emails to 20 different software companies which were interested after a
short talk at the Connecticum fair. Second, we sent mails to different software
development related mailing lists, including C/C++, Python, Ruby, Smalltalk,
git, several Linux distributions, mailing lists of Hackerspace and several open
source projects. We also spread the link on social media via Facebook, Google+
and Xing groups, Twitter, Reddit, and ResearchGate. Judging on the number
of answers arriving after each time we spread the link, Reddit brought in the
most participants. Reddit also was the medium where we received the most
feedback from participants in the form of comments.

4.3 Results

In the end, our online survey has completely been answered by 303 partici-
pants.

4.3.1 Background Information

The vast majority of our participants were male (287 participants, 95 %). Only
four participants reported being female and twelve gave no answer. The av-
erage age of participants is 33, the median is 31. A detailed view of the age
distribution can be seen in Fig. 1.

232 participants reported having an IT-related educational degree (77 %),
71 said they had none (23 %). Most participants had a Bachelor’s (98 par-
ticipants, 32 %) or Master’s degree (102 participants, 34 %), while PhD (20
participants, 7 %) and Job Training (12 participants, 4 %) are less common.
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Fig. 1 How old are you?

Of those having no IT-related degree, 23 reported having some sort of school
degree, 15 reported having a Bachelor’s degree, 16 reported having a Mas-
ter’s degree, four reported having a doctoral degree, one reported having an
associate degree and 8 did not report any degree. Four participants reported
having a degree not fitting in the English classification.

The distribution of experience in software development is shown in Fig. 2.
It can be seen that our participants range from inexperienced developers to
very experienced ones.

47 Participants reported working alone (15 %). These are either freelance
developers or students. Calculated over the remaining participants, the es-
timated company size ranges from 2 to large corporations with more than
100,000 employees. The median company size is at 200 employees. The first
and third quartile are 25 and 1,400 employees. This shows that most of our par-
ticipants work for small to medium sized companies except for some outliers.
The number of software developers in the company shows a similar distribu-
tion. The maximum number of software developers is 65,000, the median 40.
The first and third quartile are 8 and 250.

Finally, we asked our participants for their favorite programming language
(multiple answers allowed). Fig. 3 presents the results that highlight the most
common answers out of 64 different programming languages in total.

All in all, we argue that the distributions constitute a representative set for
software development practice. It reflects our observations from the field study
as well as matches to our own experiences from our academic and industrial
cooperation partners. We have most diverse developers from all ages, with
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Fig. 2 For how long have you been developing software?

Fig. 3 What are your favorite programming languages?

different experiences (education as well as professional), and various program-
ming communities.

4.3.2 Education

When asked, 156 participants said they have not received any education in de-
bugging (51 %). In other words, more than 50 % of our software developers had
no formal debugging knowledge. 147 participants mentioned they have (49 %).
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Fig. 4 Where and how often have you received debugging education?

Fig. 4 shows where they received it. The majority of participants received their
debugging education at universities or colleges but often only once. For that
reason, participants having an IT-related graduation are slightly more likely
to have received debugging education (Pearson coefficient 0.231).

Fig. 5 shows the relation between age and debugging education. Younger
participants reported having received such education more often than older
participants. However, this is only a small trend and the Pearson correlation
coefficient is only -0.06, indicating no linear correlation. Both results together
indicate that debugging education is still uncommon, but more university or
college courses started including it recently.

70 participants reported that they never read any literature on debugging
methods (23 %). The types of literature the remaining 233 read (77 %) is shown
in Fig. 6, as well as if they also read other kinds. It can be seen that online me-
dia are the most common source of debugging literature. Books and scientific
articles are a less common. There are only a few participants who use only
one source of literature, most use two ore even more types of sources. Sources
mentioned as other included software documentation, magazines, the source
code of debugging tools, and online lectures. Based on these numbers, we con-
clude that there is a need for most developers to learn more about debugging
in general.

1 The Pearson coefficient can be used to find linear relations between numeric variables.
Values between -1 to 1 indicate how well the actual relation can be approximated by a linear
function [33].
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Fig. 5 Debugging education depending on age.

Fig. 6 What and how often have you read literature about debugging?

4.3.3 Debugging Tools

As can be seen in Fig. 7, only the older debugging tools such as printf, asser-
tions and symbolic debuggers are commonly used by many participants. While
back-in-time debuggers are known by a larger portion, only a small number
of participants use the more advanced debugging tools or Automatic Fault
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Fig. 7 Which debugging tools do you know?

Localization (AFL) approaches. These observations confirm our findings from
the field survey.

There are almost no correlations between the programming language used
and the debugging tools used. However, participants using C++ show a small
tendency to use assertions (Pearson coefficient 0.26), and participants using C
show a small tendency to use printf debugging (Pearson coefficient 0.23).

To further investigate what is missing to adapt new debugging tools in
practice, we asked our participants about the importance of properties new
tools need to fulfill. Fig. 8 shows the distribution of answers. Overall, every
property is considered extremely important by some participants. Most impor-
tant to our participants are ease of use and available documentation. Runtime
overhead and an easy installation are less important than the actual debugging
features. Finally, IDE Integration is most often considered not that important.

We also checked for correlations between both debugging tools questions.
The highest Pearson coefficients were only 0.20, indicating that there are either
no or only small correlations. Nevertheless, we found a small relation between
participants who value a small overhead and yet apply generated likely invari-
ants. This can imply that likely invariant tools such as Daikon seem to have
a feasible runtime. However, we also found that participants who prefer rich
documentation are less likely to apply back-in-time debuggers. This may indi-
cate a lack of documentation for current available tools. There are no strong
correlations between the programming language used and the properties of de-
bugging tools participants value. Neither the use or knowledge of tools nor the
properties valued correlate with participant age, company size, or debugging
education.
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Fig. 8 What properties are important for new debugging tools?

4.3.4 Workload

Debugging is known to be an integral part of daily software development. Most
developers (144 participants, 47 %) spend 20 to 40 percent of their work time
for debugging. The next largest groups estimate using 40 to 60 percent (77
participants, 26 %) or 0 to 20 percent (54 participants, 17 %). 26 participants
spend 60 to 80 percent (9 %) and only 2 developers spend more than 80 percent
(1 %) of their time for debugging.

Fig. 9 shows the number of bugs participants reported encountering per
month. As could be expected, they report facing many easy and only a hand
full hard bugs. The answers were strict descending with rising difficulty for
222 participants (73 %).

When relating work time for debugging with the number of bugs encoun-
tered per month, one would expect participants spending less time on debug-
ging to encounter less or less difficult bugs. Using the means of the choosable
intervals, the highest Pearson coefficients are 0.18 for medium and 0.16 for
hard. All other coefficients indicate no correlation. This indicates that there is
no overall pattern in the difficulty of bugs that make people spend time on de-
bugging. However, medium and hard bugs are more related to high percentages
of debugging time than other difficulties. Neither the time spent debugging nor
the number of bugs encountered per month correlate with participant age, pro-
gramming language used, debugging education, the debugging tools used, or
the properties valued.

When asked how they feel about the change in difficulty of debugging soft-
ware over the last ten years, 133 said it got easier (44 %), 131 said it did not
change (43 %), and 39 said it got harder (13 %). The predictions of the next
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Fig. 9 How difficult are the bugs that you have to deal with (per month)?

Table 5 Time it took to fix the hardest bugs (number of answers given).

1 day 2 days 3-4 days 1 week 2 weeks >2 weeks never

17 21 38 70 31 80 46

ten years show a similar distribution. 139 Participants said debugging will get
easier (46 %), 117 said it will not change (39 %), and 47 said it will get harder
(15 %). The predictions about the future correlate with the feeling about the
past with a Pearson coefficient of 0.61.

4.3.5 Hardest Bug

As already stated by Eisenstadt [11], we can learn a lot from studying the most
difficult bugs. These are the problems that profit most from improvements in
debugging technology. For that reason, we asked our participants to position
the hardest bug they ever faced in Eisenstadt’s three dimensions. But first, we
wanted to know how much time the participants needed to find and fix their
hardest bug. Table 5 shows the results. Only a small portion of hardest bugs
could be solved in one working day or less (17). The majority took one week
or even longer (191) or was never fixed (46). This shows that the most difficult
bugs are serious issues taking up a lot of development time.
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Table 6 Root cause of the hardest bug (number of answers given).

memory parallel vendor design init variable

42 53 41 82 9 3

lexical ambiguous user unknown other

1 6 5 29 32

Table 7 Most useful technique to find the hardest bug (number of answers given).

stepping wrapper printf log diff breakpoints tool

54 5 33 12 38 15

reading expert experiments not fixed other

41 4 58 31 12

1. Type of bug Table 6 shows the root cause participants could identify for
their hardest bug2. The most frequent root cause was a design fault. This con-
firms that there is a need for development processes that help finding design
errors as early as possible. The second most frequent root cause was paral-
lel behavior, shortly followed by memory errors, and vendor responsibility.
This indicates that debugging parallel applications is especially difficult and
may require specialized tools and methods not yet available. The high number
of memory errors indicates that existing memory debuggers such as Valgrind
or mtrace are either not powerful enough or not well known. Although one
might suspect memory errors to be more prominent in C and C++, the dis-
tribution of used programming languages is not significantly different to the
overall distribution. This may, however, be influenced by the fact that many
participants named multiple languages. The high number of bugs caused by
vendor components indicates that external libraries also include a high number
of failures. Answers given as “other” are mostly bugs that are triggered by
a combination of root causes acting together. It is noteworthy that many of
the participants that said their hardest bug was never fixed could, however
identify a root cause. We attribute this to bugs, that could be worked around
or encapsulated so they did not impact the final program, but not really fixed.
There is also the inverted case of bugs that were fixed according to the previ-
ous question but their root cause was unknown. These may be bugs that just
vanished after a while, meaning they got fixed by accident.

2. Why was it especially hard to debug? Table 7 shows the technique that
was most helpful to our participants, when they localized their hardest bug.
The most helpful technique were controlled experiments. This indicates that
scientific debugging is not only easy to learn but also very useful to our partic-
ipants. The second most frequent answer was stepping through the program.
This might be caused by the prominence of symbolic debuggers or by inspect-
ing the program being useful to locate difficult bugs. It might also indicate

2 As early results of the survey have shown a large number of parallel behavioral bugs,
we added it as a new choice that was not represented in Eisenstadt’s original version.
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Table 8 Main difficulty source for hardest bug (number of answers given).

distance tools output assumption bad code unknown other

87 47 1 33 38 35 62

that some of these bugs may be caught faster if developers had other tools that
could help them better. The next most frequent answers were reading the code,
setting breakpoints, and printf debugging. These indicate that hard bugs are
those that require the developer to question his model of the program and
rebuild or verify it. Useful techniques mentioned as “other” include combina-
tions of the provided categories, time to let the mind calm down, insights from
non-experts, a redesign of program components, acquiring access to source code
not available before, and creating a minimal failing example.

When relating the root cause of bugs with the most useful technique to
find them, some patterns emerge. Applying a Chi-Squared test3 indicates that
these dimensions are dependent (Chi-Squared = 108, p-value = 0.006):

– Specialized tools were useful to find memory errors and less useful for other
types of bugs.

– Reading code was especially helpful to find bugs caused by parallel behavior.
– Controlled experiments were most useful to find bugs that were caused by

vendor components.
– Almost all design errors have been fixed.

3. What technique turned out to be the most helpful to find it? Table 8 shows
the reason why the hardest bugs were so difficult to find. The most frequent
answer was the distance between the unexpected behavior and the root cause
being high. This indicates that tools that help uncovering the infection chain
might especially support debugging efforts. Such tools may for example be
back-in-time debuggers and program slicing. Except for misleading program
output, which was answered only once, the remaining categories share a similar
number of answers. There was an very high number of “other” answers indi-
cating that Eisenstadt?s categories are not sufficient: 14 participants blamed
the inability to inspect or change relevant system parts; 14 identified their
inability to reproduce the erroneous behavior in a controlled environment as
the main difficulty; 10 participants named the necessity to change large parts
of the system to verify their theory of the bug their highest obstacle; 6 par-
ticipants blamed poor design, requirements, or documentation; 6 participants
were hindered by a high complexity of the program; 4 candidates attributed
the difficulty to a multitude of problems coming together; a long runtime of
related test cases was mentioned twice; and one participant blamed company
politics for keeping him from spending the necessary amount of time on the
bug.

3 A Chi-Squared test can be used for any kind of discretely categorized data with a
large number of samples in each category. A large value indicates dependence and a low
independence [34].
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Table 9 For what reasons, do you keep logs? (number of answers given).

teaching similar code review quality development process other

50 91 113 38 90 30

When relating the difficulty to the root cause, the main difficulty when
trying to find errors caused by parallel behavior or by vendor components seems
to be the large distance between symptoms and root cause (Chi-Squared = 101
p-value = 0.036). Relating the difficulty to the most useful technique gave
some more insights (Chi-Squared = 104 p-value = 0.024). The interesting
combinations were:

– Printf debugging was seldom useful to find the root cause with a large dis-
tance to symptoms.

– Stepping through the program or controlled experiments helped closing that
gap.

– When the usual tools were hampered, most times only reading the code could
help.

– When bad code limited the debugging success, stepping through the program
provided the most help.

Changes in the last 15 years There are several differences to Eisenstadt’s re-
sults. Bugs caused by a faulty design logic were more common in our survey,
while memory errors were less common. The new category of parallel errors
was very common. While controlled experiments were very seldom amongst
Eisenstadt’s war stories, it was a very common answer in our survey. Eisen-
stadt’s identified inapplicable tools as a main difficulty for hard bugs. While
inapplicable tools were still very common in our survey, it was not much more
common than other sources. Bad code was very seldom in Eisenstadt’s anal-
ysis but the third most common shortly after hampered tools in our survey.
This shows a significant shift in difficult bugs and the methods employed to
find them, but a similar set of difficulties faced in the process.

4.3.6 Learning from Past Bugs

To find out what professional developers learn from their bugs, we asked them
if they keep a log of their fixed bugs. 138 participants (46 %) said they add
every bug to their log, 76 (25 %) said they add major bugs to the log and 89
(29 %) said they do not keep one. Of those who use a log, 108 developers (50 %)
said they add the solution to every bug to the log too. 96 (45 %) said they add
the solution to difficult bugs and 10 (5 %) said they do not add the solution
to the log. This may indicate a need among professional software developers
to learn from the past and to avoid creating similar bugs again.

To further investigate this, we asked our participants what they use these
logs for. The results can be seen in Table 9. The most participants said they
use it to perform code review. This makes sure the bug is removed and the
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Table 10 How do you check the successful removal of bugs? (number of answers given).

code review manual testing automatic testing other

166 275 208 7

cause is understood by at least one colleague. Using it to identify similar
bugs in the future and to improve the development process are the next most
frequent categories. Teaching colleagues and improving code quality mentioned
our participants less often. Other answers included the coupling of logs with
the version history of programs (10 times), a documentary function (5 times),
using it to indicate a finished step in the development process (4 times), an
extension of their own memory (3 times), the prevention of regressions (3
times), and communicating their work to customers. One participant explicitly
mentioned not using it for anything.

Calculating the Pearson coefficients for the different uses of bug logs re-
vealed some tendencies. People using their logs to improve code quality tend to
also aim for improvement of their development process and vice versa (Pear-
son 0.32). Comparing new bugs to the log to identify similarities seems to be
common among those participants who teach colleagues (Pearson 0.22) or try
to improve their process (Pearson 0.24) using the bug log.

4.3.7 Bug Prevention

We asked our participants to tell us how they check if their bugs are really
removed. The results can be seen in Table 10. As might be expected, manual
and automated testing are very common. Half of our participants also perform
a code review, but code review was never the only method used. 114 partici-
pants (38 %) said they use three methods, 108 (37 %) use two of them and 71
(23 %) use only one method. The remaining 10 participants (2 %) mentioned a
quality assurance or testing department, benchmarks, user testing and “letting
time pass”.

Fig. 10 shows when developers create automated tests and if they do so at
all. Test cases written after fixing the bug are slightly less common then test
cases written upfront. Test cases written while debugging are in the middle.
The minority of developers (45 participants, 15 %) never create any test cases.
Most developers (171 participants, 56 %) create test cases for major or difficult
bugs, but not for all. However, there is also a substantial number of developers
(87 participants, 29 %) who always create test cases at least at one of these
times. Surprisingly, the creation of tests shows no correlations with the time
spent on debugging nor with the number of bugs encountered.

Fig. 11 shows how often automated tests of different types are run. Func-
tional tests are common among our participants, 175 (58 %) run them at least
daily. Performance and destructive tests are less common, but still run regu-
larly by 129 participants (43 %) each. There are also many participants (105
(35 %) and 91 (30 %)) who run these tests irregularly. Automated security tests
are run less often. Only 72 (24 %) participants said they run them regularly,
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Fig. 10 Do you create tests during debugging?

Fig. 11 How often do you run automated tests?

129 (43 %) do not run them at all. This might indicate a neglect for security,
but can also attribute to the different needs of different software projects. While
functional specifications, a reasonable performance and stability under unfore-
seen circumstances are a need for most software products, only those working
with sensitive data, providing network operations, or potentially endangering
people are concerned about security.
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Fig. 12 How often do you perform automated analyses?

Fig. 12 presents how often participants use automated tools to analyze
different features of their product. The answers show the same tendency as
in the previous question. If participants adopted these methods at a regular
part of their development process, they also decided to run them often. While
analyses are less common then automated tests, there is a substantial number
of participants who analyze their source code for common pitfalls using a static
code checker such as lint. We attribute this to the high efficiency of modern
lint tools and their easy integration in IDEs or automated build processes.
Test coverage analyses and checking for memory related errors are almost as
common, but not performed as regularly as lint. Security analyses are still
performed by over half of the participants, but even less regular than coverage
and memory analyses. Data flow analyses and model checking are not common
among our participants. This might be attributed to the high run time of such
tools and the development process overhead they can introduce. As it is the
case for automated testing, the use of automated analysis shows no relation
with the number of bugs encountered or the time spent debugging.

4.4 Research Directions

The results of our online survey show that the field of debugging still has a lot
of open issues. There are several things that can be further improved to easier
the life of software developers. Here we summarize our results and discuss
valuable directions for future work.
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Education The fact that participants having received debugging education did
not answer significantly different may indicate that the existing education is
not enough. While it is important to know how to use debugging tools, it is also
important to know how to reason about a program and track down the source
of a problem. There is a need to broaden this topic not only at universities.
For example, at our institute debugging is limited to one lecture as part of the
“software engineering I” course. From our experience, the situation is often
not much different at other locations. As debugging still requires a lot of time
in software development, we argue to extend debugging education, to create
practical exercises, and advanced tutorials. This will give students and software
developers not only the right tools but also several systematic ways to tackle
a problem.

Debugging tools In the last years, many researchers presented several new
and very promising debugging tools. Unfortunately, these tools have not yet
adopted by many professional software developers. On the other hand, pop-
ular debugging tools maturing very slowly with respect to new features and
methods. For that reason, we need to mature our sophisticated tools for a
large audience. In doing so, it is important to tackle the challenges of new
debugging tools, namely, usability and overhead.

Workload Today as well as 15 years ago, debugging is a tedious task. We have
not found a clear picture of improvement in debugging. It still costs developers
a huge amount of their daily work time and bugs are as common and difficult to
resolve as ever before. Thus, we conclude that there is still a lot to do. Research
as well as practice need to incorporate their approaches, best practices, and
experiences in order to reduce the workload for developers.

Hardest bug We have learned a lot from the hardest bug stories but the most
important outcome for future work is the existence of a new root cause. Bugs
being related to parallel behavior are the second most source. This points to
a need for new tools and methods that better support debugging of parallel
applications. The many different patterns for creating parallel programs and
the difficulties in observing multiple control flows at the same time hinder
current debugging tools to support developers effectively. Further investigation
of this special area of program debugging could provide valuable insights.

Learning from past bugs Our study revealed that bug logs are an important
tool. This source of information allows developers to share their experiences
and to prevent similar bugs in advance. However, maintaining these logs re-
quires additional time and carefulness. For that reason, they are mostly done,
if at all, only for the most difficult bugs. We think that a better support in
logging can help developers in training colleagues for localizing similar bugs
more easily. For example, the idea of an automated logging mechanism seems
to be promising as it records all debugging steps without much effort. After
that, developers can share their results with the team for teaching purposes.
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Bug prevention We could not prove any relation between automated testing
and analyses and the number of bugs encountered or the time spent on debug-
ging. While this could indicate ineffectiveness of the established automated
methods with respect to debugging, we rather argue that testing and analyses
enhance the development process and its outcome in general. With the help
of such tools, developers not only produce more and complex code but also
they help them to reveal more bugs in their more difficult code. It might be
interesting to study the effects of using automated bug prevention methods
with respect to code quality and developer effectiveness in more detail.

4.5 Threats to Validity

The main threat to the validity of our results is the limited number of partici-
pants. While 303 participants can provide interesting insights, a larger number
is required to make reliable statements. Many of the Pearson coefficients we
calculated are small, meaning they cannot be relied on to draw a final conclu-
sion on the relation of the variables. However, they are distinct from zero and
so indicate at least a positive correlation.

Additionally, all answers depend on self reflectance of the participants,
which may vary in precision and correctness. While this did probably not
create a systematic error, it may have increased the noise to levels that make
correlation checks incorrect. The most prominent tasks of this type are rating
the importance of tool properties and estimating the change in difficulty of
debugging software.

It may be worth noting, that it is disputable if participants under the
age of 20 can be considered professional software developers. However, at the
beginning of the study we explicitly asked only professional software developers
to continue, so these participants probably consider themselves such. Although
they are probably inexperienced, they may work as interns or contribute to
open source projects.

There is some information, that we did not acquire, although it would be
useful. For example, we did not collect the kind of software development our
participants are working in. This disables us from analyzing the difference
between web developers, backend developers, mobile application developers,
and probably more groups.

Although we tested the questionnaire internally before starting the online
survey, there remain some flaws in the design of the existing questions:

– When asking the participants, what programming languages they use, a
lot of people gave too many answers. This made it very difficult to analyze
the programming language used for correlations. A limit on the number of
languages named could help to reduce this problem.

– In the question about the knowledge of debugging tools there was the
option “I tried”. Some participants told us, they felt this option was poorly
chosen, because it suggested rejecting the tool. “I use sometimes” might
have been a better choice.
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– When analyzing the importance score participants assigned to different
properties of debugging tools, we were not able to analyze if the order of
importance shows patterns. There are more properties then degrees of im-
portance and many developers chose the same degree for multiple answers.
Asking them to order the properties instead of assigning an importance
score may have been more useful.

– Similarly, participants disagreed what counts as a bug log, varying from
sophisticated bug tracking software to commit messages.

– Some of the answers given as “other” in all three of Eisenstadt’s dimensions
included answers that fit in one of the provided categories. This indicates
that the categories were not explained clearly enough in the survey, caus-
ing confusion in the participants. Nevertheless, we ordered these answers
manually in the end.

Another indicator for flaws in the survey design is the number of people who
did not complete the survey. Out of 713 participants who started the survey
only 303 completed it. 199 potential participants did not answer any question.
Another 34 did not want to answer questions about their companies size. 94
stopped before answering the questions on tool knowledge and tool proper-
ties. 35 would not tell about their workload. 32 did not answer the questions
concerning the hardest bug. 12 Did not answer the bug prevention question.
The remaining 4 would not answer the questions on debugging related edu-
cation. Almost all questions were mandatory, some participants told us that
they did not like that. While we used this feature to prevent holes in the data,
it might have prevented us from reaching a larger number of participants. It is
also possible that some participants chose random answers because they were
forced to answer a question they did not want to. This might contribute to
some noise.

5 Conclusion

In this paper, we presented our results of studying debugging behavior of pro-
fessional software developers. We reviewed the available literature and noted
a 17 year gap since the last comparable study. We performed an explorative
field study, visiting four companies in Germany and observing a total of eight
developers in their habitual working environment. All of them were proficient
in using a symbolic debugger. Although all followed a standard approach that
can be seen as a simplified scientific method, none of them was aware of this
or able to explain his approach without resorting to demonstration. None of
them had any formal education in debugging and also nobody had knowledge
of back in time debuggers or automatic fault localization techniques. Based on
these results, we created an online survey to consolidate and expand our re-
sults. A total of 303 software developers took part in this survey and answered
all the questions.

Only half of our participants mentioned receiving debugging education, in-
dicating that educators still assume that debugging is a minor part of software
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development or that students will learn it by themselves. However, there also
was no significant difference between participants with and without education,
indicating that the existing courses and trainings are indeed not more effective
in teaching important debugging skills than self learning.

By placing the hardest bugs in Eisenstadt’s dimensions of bug classification,
we were able to show that the most difficult bugs are related to erroneous
program design or parallel behavior. Most participants named a large distance
between root cause and observable failure as the main difficulty of finding
bugs. This indicates that developers are in need of tools that support them in
analyzing the interactions of different parts of the program, even if those run
in parallel. We could also observe that different tools and methods were useful
for different types of bugs, judging which strategy and tool to apply may be
one important skill to learn when trying to reduce debugging time. Our results
also vary from Eisenstadt’s in many ways: we found less memory errors and
the new category of parallel errors; we revealed that it is now very common to
apply controlled experiments, and, finally, the main difficult sources for bugs
are not only inapplicable tools anymore but causes such as bad code have also
strong influence. This shows that debugging is an ever changing field, where it
is necessary to reevaluate the challenges and opportunities from time to time.
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