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ABSTRACT
Built-in data structures are a key contributor to the performance
of dynamic languages. Record data structures, or records, are one
of the common advanced, but not easily optimizable built-in data
structures supported by those languages. Records may be used in an
object-oriented fashion or to implement object orientation itself.

In this paper, we analyze how records are used in different appli-
cations in the Scheme dialect Racket. Based on the data obtained,
we suggest the application of existing optimization techniques for
records and devise a new one for immutable boolean fields. Most
of them can be applied to a wide range of record implementations
in dynamic languages. We apply these optimizations to records in
Pycket, an implementation of Racket. With one exception, micro-
benchmarks show a two- to ten-fold speed-up of our implementation
over plain Racket.

CCS Concepts
•Information systems→Record and block layout; •Software and
its engineering → Data types and structures; Classes and ob-
jects; Just-in-time compilers;

Keywords
Record data structures; Objects; Racket; Optimization

1. INTRODUCTION
For programming language implementations, performance is often

key and, among other aspects, built-in data structures contribute to
the overall performance of a language implementation. The lack of
optimization of built-in data structures may result in poor perfor-
mance and increased memory consumption of dynamic languages [2,
17]. In the context of modern virtual machine (vm) development
frameworks, such as RPython, some data structures, such as collec-
tions [5], are already in the focus of research.

Record data structures or records are one of the advanced com-
mon built-in data structures, which are not deeply investigated in the
sense of optimizations for modern vms. Basically, records aggregate
heterogeneously typed, named fields, possibly with a definition in
a record type. In some languages, such as Racket, records may not
only be used to store the data, but have additional features. Racket is
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a dynamic multi-paradigm Scheme-family programming language
with powerful built-in record data structures, where records can be-
have like objects of a class or even like a function. Records also
often provide identity, encapsulation, abstraction, and maybe behav-
ior, thus providing key ingredients for object orientation. In fact,
records can be used to implement object-oriented features, such as
the class-based object orientation in Racket [13].

Our analysis shows that, at least for the Racket language, records
have a noticeable optimization potential. In this work, we consider
an efficient implementation of records for dynamic languages and for
Racket in particular. We focus on the RPython-based implementation
named Pycket.

In this work, we make the following contributions:

• We analyse and evaluate the usage of record data structures in
Racket applications (section 3).

• We identify applicable optimization techniques for the effi-
cient implementation of record data structures (section 4).
In particular, we propose a novel optimization technique for
static immutable boolean fields in record data structures (sec-
tion 4.3).

• We implement Racket’s record data structures with optimiza-
tions and evaluate performance results (section 5 and 6).

2. BACKGROUND
Record data structures, or records, are collections of named fields

of heterogeneous values. Records may form a type, instances of
record types are typically of equal size — all in contrast to data
structures like arrays that are collections of typically indexed fields
of homogenous values. Array-like data structures do not form types.
Individual arrays may differ in size. Moreover records may have
various additional features, which may differ between programming
languages.

2.1 Structures in Racket
Racket [12] is a dynamically typed, multi-paradigm programming

language from the Scheme-family [20]. Racket differs from Scheme
in certain aspects such as immutable-by-default lists, built-in support
for design by contract [16], or a more complex record data structure
concept called structures (or structs), providing features beyond the
mere ability to store values in their fields.

Racket structure types can form hierarchies, supporting inheri-
tance. Structures in Racket are immutable by default, but can be
explicitly declared to be partly or fully mutable. Structure type prop-
erties allow to store arbitrary data inside the structure type. Typically
properties are used for procedures that work on a structure’s field
values. Certain properties can be used to make structure instances
callable; these structures can then act like procedures.

The example in listing 1 contains two structure instances: a person

named “Sam Adams”, bound to customer in line 2. The corresponding
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Listing 1: Racket structure using structure hierarchies, explicit
mutability, and callable structures

1 (struct person (name))

2 (define customer (person "Sam Adams"))

3 (struct employee person (position [salary #:mutable])

4 #:property prop:procedure

5 (lambda (self) (* (employee-salary self) 0.146)))

6

7 (define worker (employee "John Smith" "Developer" 50000))

8 (person? 0) ; -> #f

9 (person? customer) ; -> #t

10 (person? worker) ; -> #t

11 (employee? customer) ; -> #f

12 (employee? worker) ; -> #t

13

14 (set-employee-salary! worker 55000)

15 (employee-salary worker) ; -> 55000

16

17 (worker) ; -> 7300

structure type person is defined in line 1 as structure with one field,
name. The predicate person? further down confirms this. The second
structure instance bound to worker in line 7 is an employee named
“John Smith” (name) in the “Developer” position (position) who
earns 50 000 money (salary). The structure type employee, defined
in line 3, makes use of structure hierarchies— it is a sub-type of
person and inherits its name field. Moreover, it has a mutable field
salary. Hence, the mutator set-employee-salary! further down can
be used to update the field. The accessor employee-salary can be
used to retrieve the stored value. Lastly, the structure type has a
property named prop:procedure that is bound to a procedure. That
way, calling the worker structure instance in the last line results in the
procedure to be called with this instance and computes the amount
of medical insurance fee based on the salary and the fixed rate.

2.2 Structures and Objects
Scheme is a multi-paradigm language family that is probably best

known for its functional aspects. However, object-orientation is not
only possible to implement and use, for example with Common
Lisp Object System (clos) implementations such as TinyCLOS, in
Racket an object-oriented (oo) implementation is readily available
with the racket/class standard library. It provides class-based object
orientation with message passing, mixins, and traits [13]. This system
is implemented in terms of Racket structures; every class is also a
structure type, every object is a structure instance. While it would
have been possible to focus solely on the object-oriented part of
Racket, considering all structures instead benefits the implementation
of object orientation as well as other parts of Racket.

Racket structures actually can directly be used in an object-oriented
fashion— at the loss of message passing and runtime polymorphism
compared with the library implementation of object orientation. How-
ever, other object-oriented fundamentals, such as instance identity,
encapsulation, abstraction, and even object behavior are already
present in Racket’s base structures and also justify an investigation
under an object-oriented point of view.

3. STRUCTURE USAGE IN RACKET
Racket structures are a powerful data structure with broad appli-

cability. They are widely used in Racket packages1 and projects on
GitHub2. Structures are essential for the Racket contracts implemen-
tation. In this section, we investigate how structures are actually used
in different Racket applications. We perform a static and dynamic
1http://pkgs.racket-lang.org (visited 2015-12-05)
2https://github.com/search?q=language%3Aracket (v. 2015-12-05)

analysis of existing applications to identify the typical size of struc-
tures, types used within structures and the frequency of mutation.

We choose five Racket applications from different domains in-
cluding development tools, text analysis, mathematics, and games.
I Write Like3 — one of the biggest Racket applications— is a web
appication that analyses the style of a given text by comparing with
styles of many famous writers. This application represents a heavy
text analysis application. The markdown parser application4 is a sim-
ple parser for markdown formatted text that is used in many other
Racket projects as a library. Racket CAS5 is a simple computer alge-
bra system for Racket with a good built-in test set. 20486 is a Racket
implementation of a famous puzzle-game with numbers. Finally, Dr-
Racket is a feature-rich Racket integrated development environment
(ide), which is widely used by Racket-programmers.

3.1 Static Analysis
We perform a static source code analysis of the Racket v6.2.0.4

standard library comprising 4 812 Racket source code files. We track
the number of immutable and mutable fields and super types per
structure.

Results: Of all the source files, 11.6 % contain all 1765 structure
type definitions, 31.9 % with super-types. Structures have 2.3±2.6
fields on average, with a median of 2. The largest structure from
the Racket library has 37 fields. 91.6 % of all structure types are
immutable. The distribution is shown in Figure 1.

The statically determined number of structure types in the appli-
cations analyzed is comparatively small; together, they define 22
structure types with at most 5 fields (average 1.64±1.26, median 1),
all immutable. We refrain from plotting the distribution.

3.2 Dynamic Analysis
We instrumented the structure implementation in Racket to track

the creation process of structure types, structure instances, the amount
and types of structure field values, and the frequency of mutate
operations. Our analysis reports the total usage of structures including
the Racket core.

Results: Refining the static analysis, about 85 % of all fields used
are immutable, with DrRacket being an outlier with about 61 % of
immutable fields. Structure instances have 1.62 fields on average
with a median of 1. The number of instances of each structure type
depends heavily on the specific application, ranging from 200 to
1500 in our tests. The number of mutations varies even more.

Although structures in Racket are typically used monomorphic,
that is the data type of values stored in a field does not change, some
instances’ fields are used with values of more than one data type
(non-monomorphic). The amount of structures containing at least
one non-monomorphic field is between 5 % and 15 %.

The distribution of field types is homogeneous as illustrated in
Figure 2. The most common data type used in structure field type
is boolean. Up to 70 % of booleans have the value #f (false), which
is used in up to 88 % as a placeholder default value for other data
types, such as procedure. Procedures are also used widely, to the
extent that some structures only contain exactly one procedure—
such procedure-containers are often used as super-types for other
structures. Strings, mutable and immutable, pose the most user-faced
data type in field types while symbols and the syntax type (used by
the Racket macro system) are more system-faced, or even meta-level
types used in structures. Non-scalar field types, such as pairs and
lists, and other structures are common as field types, too. Other types
have a collective share of about 10 %.

3https://github.com/coding-robots/iwl (visited 2015-12-05)
4https://github.com/greghendershott/markdown (visited 2015-12-05)
5https://github.com/soegaard/racket-cas (visited 2015-12-05)
6https://github.com/danprager/racket-2048 (visited 2015-12-05)
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Figure 1: Distribution of number of structure fields in the Racket standard library.
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Figure 2: Most frequent field types in Racket applications

Despite our initial assumption, integers are not very common,
except for the 2048 game that heavily uses integers and floats. Other
applications use numbers significantly less frequently. To show this,
we separated 2048 in Figure 2.

We found only few common data type collocation patterns in
structures, despite the homogeneous field type distribution. Such
patterns include the use of integer, integer-structures in 2048 for
coordinates, which is nevertheless uncommon for other applications.
Thus, combinations of stored together field types in structures are
mostly application specific. Figure 3 shows this in more detail.

3.3 Discussion of Analysis Results
We found that Racket structures are relatively small and contain

between one or two fields on average. Furthermore, about 85 % of
structure fields are immutable. Initially unexpected, booleans are
the most common data type in structures. We found that #f is used a
placeholder default value and that the corresponding filled value is
often a procedure.

4. OPTIMIZING RECORDS
Based on the analysis in section 3, we propose fitting optimizations

to use to improve performance when compared with a simple, straight-
forward direct-mapping approach. We think that this catalogue of
optimizations can be worthwhile beyond Racket, given that the usage
of record data structures is not completely dissimilar. In particular,
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Figure 3: Most frequent combinations of field types in Racket
applications

we suggest applying three standard optimizations and propose a new
one, immutable boolean field elision (ibfe). As a running example,
we will use the structures of listing 1.

4.1 Direct Mapping Approach
We first present a most simple approach to realizing Racket struc-

tures, by directly mapping the semantical language components to
memory entities. Considering Figure 4, directly applying Racket’s se-
mantics, we end up with two records instances, one for the employee

type and one for the person type. The field values are stored in the
storage objects of both instances according to its type. Using storage
arrays poses a simplification as records with different numbers of
fields can be represented by the same implementation type. Note that
this approach does not constitute best practise but rather serves as a
baseline for the optimizations to come.

This approach anticipates the Racket way to access inherited fields.
For example, to access the name of worker in our example, the native
accessor behavior will be called with an offset 0 and the structure
type person, but to access position, it will be called with an offset 0,
too, but this time with the structure type worker. However, certain per-
formance improvements already become apparent: super-instances
never exist solitarily but always together with their sub-instances. Fur-
thermore, they duplicate the hierarchy information already available
in the type.
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4.2 General Optimizations
There are existing optimizations for records and similar structures

we first consider and apply. The resulting combined approach is
illustrated in Figure 5.

Flat Structure.
A flat structure collapses the semantical hierarchy of record objects

and represents every record with only one object that combines all
fields in its storage. Such an implementation is typical for objects in
oo languages, for example Squeak / Smalltalk [14]. This approach
loses the redundant super-instance / sub-instance tandem and hence
improves memory consumption.

Nevertheless, records with a flat structure make the implemen-
tation of the native accessing behavior more complex. The per-
structure-type indices now have to be mapped to the absolute index
into the record’s storage. These indices do not change over time
and, therefore, a static mapping for each field can be calculated in
advance.

Inlining.
The direct mapping approach contains an indirection between a

structure’s representation entity and the actual storage for the struc-
ture’s fields. This eases the implementation of the representation
entity, for example as instances of a structure class. This additional
hop, however, can be cause for performance bottlenecks, as every field
read has to traverse the indirection. A best practice is to fuse records
and their storage, improving runtime performance by reducing costs
of object allocation and pointer dereference. Implementations like
the Squeak vm or the Java Virtual Machine (jvm) do this for their
object representation.

Integer
object header

50000

Record Type
object header

Record Type
object header

name (Person)

name (Employee)
super reference

type reference
super reference

Record
object header

storage

type reference
super reference

Record
object header

storage

super reference

[ ]
len (2)

String
object header

Developer

[ ]
len (1)

String
object header

John Smith

properties

properties

immutables

immutables
guard

guard

Figure 4: Direct mapping approach representation of worker
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String
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Developer

Figure 5: Flat structure, inlined fields, and mutable salary field,
wrapped into a typed cell with an unboxed value.
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false on field 2

(salary)type reference

Record
object header

Record Type
object header

name (Employee)
super reference

fields offsets
properties

immutables
guard

String
object header

Marissa Brin

String
object header

CEO

Record Type
object header

name (Person)
super reference

fields offsets
properties

immutables
guard

Figure 6: employee structure with an ibf indicator denoting the
elision of field 2

Arbitrarily large structures may, however, slow down the overall
allocation performance and hamper garbage collectors (gcs). While
Racket structures may have up to 32 768 fields, the actual amount of
structure fields used in Racket is typically low; between one and two
fields on average (cf. section 3). Hence, we propose to limit inlining
to only few fields and store larger records with a separate storage, as
done in the PyPy implementation of Python [19].

Mutability separation.
Racket structures have mostly immutable fields (cf. section 3), and

implementations can take advantage of this. However, if all fields
of a structure would be always immutable, better optimizations are
imaginable; especially just-in-time (jit) compilers that use tracing
or partial evaluation can benefit. We propose to treat all structures
as immutable and use an indirection object, called cell, for the few
fields that are actually mutable. Changing the value of a field no
longer affects the structure itself but rather delegates the change to
the cell representing the mutable field. This technique is common
in Lisp and Scheme applications, among others. As the mutability
of fields is a property of a structure’s type, wrapping objects in cells
can efficiently be done at structure allocation.

Using cells implies an inherent memory and access time overhead.
However, as most fields are used monomorphic, we can specialize
cells to typed cells, which store a type and a value. They can change
their type field dynamically upon mutation. Thus, if a mutable record
field belongs to a known type, such as integer or float, a typed cell
stores its value unboxed, reducing the cell’s overhead. Note that
the concrete overhead depends heavily on a chosen implementation
strategy.

4.3 Immutable Boolean Field Elision
Booleans are the most frequent field type in Racket structures.

However, up to 70 % of boolean fields have the value #f. Knowing
that most (up to 85 %) fields are actually immutable, a high number
of fields in Racket structures hence consist of immutable boolean
fields (ibfs).

It seems feasible to actually not store this infomation as a field
value per se. Instead of storing both positions and values of the
boolean fields, we use an indicator to denote all positions of ibfs
within a structure, effectively eliding the immutable #f values; we call
this immutable boolean field elision (ibfe). This indicator might be
implementation specific; but in the same way structures that contain
mutable fields or unboxed fields must be commuticated to the runtime,
ibfs can be communicated similarly, be it tagging, header bits, or
class-based indication as in Figure 6, to name a few. It is crucial that
all possible combinations of ibfs for an arbitrary record instance are
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present as indicators at structure allocation time. For example a record
class with three fields, all immutable, that gets instantiated with an #f

value on position two could use an implementation class that treats
position two specially by not providing storage for it (cf. Figure 6).
That implementation class would act as ibf indicator. Note that the
#t value is not treated specially by immutable boolean field elision
(ibfe), as are #f values in mutable fields. These are stored as if ibfe
was not present at all.

Using ibfe, memory for immutable #f values can be saved at the
expense of providing a large enough number of ibf indicators, which
poses a trade-off. Applications with only few ibfs and large structures
would be hit by the overhead of maintaining ibf indicators; however,
our analysis shows that these cases are rare in Racket applications.

5. STRUCTURES IN PYCKET
We implemented the presented optimizations in Pycket, a Racket

implementation using the RPython toolchain and its meta-tracing
jit compiler.

5.1 RPython and Pycket
RPython [4] is a framework for implementing interpreters, con-

sisting of a type-inferenceable (“restricted”) subset of Python and a
toolchain that translates an interpreter written in the RPython lan-
guage into an efficient vm. Lower-level vm features, such as gc,
object layout, and a meta-tracing jit compiler are inserted automati-
cally during the translation process. RPython was used for efficient
implementations of several dynamic languages including Python [1],
Prolog [7], and Smalltalk [6].

Pycket7 is an implementation of Racket using the RPython tool-
chain and based on the control, environment, and continuation (cek)
abstract machine [11]. Using the cek machine eases the implemen-
tation of some more complex features of Racket, such as proper
tail calls, first-class continuations, and multiple return values [3]. It
is already competitive with the best existing ahead-of-time (aot)
Scheme compilers, particularly on safe, high-level, generic code [8].
However, it is not yet feature-complete and in particular had no
structure support prior to this work.

5.2 Optimization Steps
Practically all implementations of record-like data structures skip

the step Direct Mapping Approach described in section 4.1. However,
for evaluation purposes, we included a direct-mapping-based imple-
mentation all following optimizations are applied to. Accordingly,
all structure types are implemented as instances of an RPython-level
class (W_StructType) and all structures as instances of a distinct class
(W_Struct or its subclasses) with a reference to the structure type, a
references to a storage for the fields, and possibly a reference to its
super-instance.

Flat Structure.
For a flat structure, a structure instance no longer refers to its super-

instances but assumes all their former fields. However, the positions
of all fields in the structure type hierarchy have to be mapped to
the absolute fields positions to retain data access semantics. These
immutable offsets are calculated once during the structure type ini-
tialization to allow the jit compiler to remove most field-position
related calcualtions at runtime.

Inlining.
To inline fields into the structure instance, several specialized

structure classes exist that each represent structures of a certain size.
Following PyPy’s example, only up to 10 fields are actually inlined;
larger structure instances still use a separate storage. Therefore, 12
7https://github.com/samth/pycket/ (visited 2015-06-01)

structure classes are provided. The decisions which particular class is
used for a structure instance is made at runtime. Thus, if a new struc-
ture does not exceed the limit, one of the specialized structure classes
is chosen, and field values are saved in the structure’s attributes.

Typed Cells for Mutability Separation.
The concept of a typed cell was already available in Pycket before

introducing structure support and has been used for mutable globals
and environment optimization, to name a few. Pycket cells store their
values unboxed using storage strategies [5]. If a matching strategy
exists, a cell stores its value unboxed, for example integer and float
values. Otherwise, cells use a general strategy and store values boxed.

Hence, for structure support, upon creation of a structure instance,
all mutable fields— which are known in advance— are wrapped by
cells and all of the structure instance’s actual fields stay immutable.
Also, all accessor and mutator behavior has been adapted to use the
cells to unwrap and wrap valued automatically.

5.3 Eliding Immutable Boolean Fields
To benefit from immutable boolean fields, we suggested immutable

boolean field elision (ibfe) in section 4.3. We chose to use the
structure class to represent the ibf indicators. As RPython does not
support creation of RPython-level classes at runtime, all necessary
indicators have to be generated in advance, before translation. How-
ever, a very high number of ibf classes can severely slow down
allocation and possibly start-up time. Therefore, we assume an upper
limit to the number of fields we consider for ibfe. The amount of
indicators that are necessary for a given limit l is

( l
1
)
+
( l

2
)
+ · · ·+

(l
l
)
.

In Pycket, we chose 5 as the default limit, resulting in 21 pre-defined
ibf indicator classes. This seems sufficient, given the average size
of Racket structures. Nevertheless, all ibf indicator classes are sub-
jected to the inlining described above, so that each ibf indicator is
actually represented by 12 classes for the field inlining.

Hence, when instantiating a structure, Pycket has 252 structure
classes to chose from. The operation that maps from all ibf positions
to the matching structure class benefits from a lexicographical order
of all structure classes; the combination of #f positions determines
the position of a structure class uniquely. During instantiation, all
positions of immutable fields about to be initialized with #f are
shifted to account for their elision. This can also help the inlining
optimization, as larger structures with many ibfs now can potentially
use an inlined representation instead of a split one.

Accessing an ibf is cheap; with ibfe we make sure that all ac-
cesses to those fields are in constant time.

6. EVALUATION
Pycket is not yet a feature-complete Racket implementation and

due to pending (non-structure related) features, the existing Racket
structure benchmarks do not run yet. We therefore use a set of
micro-benchmarks8 instead. We provide an evaluation and execution
time and memory consumption based on these benchmarks.

Setup.
All benchmarks were run on an Intel Core i5 (Haswell) at 1.3 GHz

with 3 MB cache and 8 GB of RAM under OS X 10.10.2. All micro-
benchmarks are single-threaded. RPython at revision a10c97822d2a
was used for translating Pycket. Racket v6.2.0.4 and and Pycket at
revision 3d0229f were used for benchmarking.

Methodology.
Every micro-benchmark was run five times uninterrupted. The

execution time was measured in-system and, hence, it does not include
8https://github.com/vkirilichev/pycket-structs-benchmarks (visited
2015-12-05)
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Figure 7: Benchmark results with execution times (left) and memory consumption (right) normalized to Racket. Lower is better.

start-up time. However, it does include warm-up time and the time
needed for jit compilation. We show the execution times of all runs
relative to Racket with bootstrapped [10] confidence intervals for
a 95 % confidence level. The memory consumption was measured
as maximum resident set size and is given relative to Racket; the
confidence intervals were negligibly small and have been omitted.

6.1 Micro-benchmarks
The micro-benchmark set consists of of ten tests. Besides examin-

ing basic operations, such as structure creation, call of the predicate
procedure and accessing and mutating structure fields, we include
two slightly more realistic use-cases.

Basic Operations.
We used the following benchmarks for the basic operations: create

creates simple structures representing two-dimensional coordinates
with integer values; create/super re-uses the create benchmarks, but
adds a third dimension using structure type inheritance; create* is
the same a create, but with an ibf as first field; create/super* is
the same as create/super, but with an ibf as first field; predicate
checks the type of given structures including the whole type hierarchy;
access performs accesses to various immutable fields of structures;
and mutate changes every value of a structure and reads the stored
value afterwards on each loop iteration. Each benchmark essentially
contains a loop with one or few basic operations and collects the
result in a variable to avoid elimination.

Binary Tree.
In the binary tree benchmark, the base structure type represents

a leaf, which has only a value. A node is a subtype of the leaf ref-
erencing two other nodes. This benchmark tests several operation
with structures of multiple types simultaneously. We use two ver-
sions of this micro-benchmark, where values of leaves are integers
(binarytree) and booleans (binarytree*), respectively.

Parser.
The parser benchmark is a Brainfuck9 interpreter. It creates one

instance of a structure referencing a list and a data pointer. The
operations on the structure include mutations of the data pointer
and accessing list elements, and hence, the parser benchmark tests
the structure’s accessor and mutator, but not the constructor. The
benchmark’s interpreter executes a simple program that generates a
Sierpinsky triangle several times.

9Brainfuck is an esoteric programming language that models a Turing
machine with eight operations on an array.

6.2 Optimization Impact and Results
We report the impact of all optimizations on execution time and

memory consumption. The final performance results of optimized
Pycket are shown in Figure 7. Note that we accumulate optimization,
as they form dependencies. Hence, for example, inlining includes
flat structures. The raw numbers are presented in Appendix A.

Direct Mapping Approach.
In some benchmarks, such as predicate, access, mutate, and also

parser, Pycket shows outright better execution time and memory
consumption results, even without any optimization (“Pycket”).

Expectedly, benchmarks that require the creation of many struc-
tures initially show worse performance, for example create and binary
tree.

Flat Structure.
This optimization improves performance when the benchmarks

frequently create structure instances, for example in all create…and
binary tree benchmarks. The impact on the remaining tests is less
pronounced. Some benchmarks with intensive access operations
show slightly worse performance results, for example the access
benchmark. As expected, benchmarks with an intensive creation
of structures require much less memory. Other benchmarks, which
do not create a hight number of structures, do not gain benefits in
memory consumption from this optimization (“+ Flat Structures”).

Inlining.
As expected, all benchmarks gained performance, especially for

creation heavy benchmarks, where the avoided indirection shows in
reduced execution time and memory consumption (“+ Inlining”).

Cells.
The mutate benchmark achieves a significant speed-up from the

cell optimization, as the jit can now treat the actual structure instance
as immutable; the additional indirection pays off. As expected, other
performance results remain approximately the same. There is only
minor influence of using cells on memory consumption. (“+ Cells”)

Immutable Boolean Field Elision.
All benchmarks with ibfs— that is create*, create/super* and

binary tree*—achieve a speed-up and reduced memory consumption.
In these particular benchmarks, the execution time becomes about
30 % faster. Memory savings range from 25 % to 40 %. At the same
time, all other benchmarks are virtually untouched, showing next to
no disadvantages of employing ibfe (“+ Booleans opt.”).
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6.3 Limitations
We only evaluated the efficiency of structures in Pycket on self-

written benchmarks. Although they are well suited to test perfor-
mance of basic operations with structures, real-world applications
may show different behavior as part of future work. Once feasible,
more elaborate benchmarks will be used.

jit warm-up time has an impact on execution time. We use our
benchmarks with a sufficient warm-up time, which is not guaranteed
to be always reachable in real-world applications. Also, warm-up
time may differ between benchmarks. Therefore, we use different,
sufficiently large numbers of iterations in every benchmark to show
the well-established performance.

Finally, we are unable to influence internal CPU optimizations,
such as enabling a boost-mode. However, such optimizations should
work same for both Racket and Pycket running single threaded.

7. RELATED WORK
Late Data Layout is a lightweight annotations mechanism [21] to

eliminate limitations of coercions between internal data represen-
tations. Boxing and unboxing operations are not inserted eagerly
by a compiler but only at execution time, with checks that ensure
the consistency of the data representation. The checks are based on
multi-phase type-driven data representation transformations local-
type inference. Hence, unnecessary transformation operations can
be omitted and data-type representations are added optimally.

The object storage model [22] of Truffle [23] creates every object
as an instance of a storage class, which works as a container for
the instance data. This class references a shape that describes the
object’s data format and behavior. Shapes and all their accessible
data are immutable, but the reference to a shape from the storage
class themselves can vary over time. Thus, any change of the object’s
shape results in a new shape. The proposed approach is suitable for
sufficiently efficient compilation with further optimizations, such as
polymorphic inline cache (pic) for efficient object’s property lookup.

A more specialized approach to increase performance of data
structures in vms is storage strategies [5] for collections of homo-
geneously typed elements. If possible, they are stored unboxed and
their type is stored separately and only once with a special object
called strategy. A similar approach is used for structures with muta-
ble cells in this work. Every cell has its strategy and its values are
saved unboxed, unless under a generic strategy.

While pointer tagging and strategies reduce memory consumption
by unboxing values, it is also possible to reduce the size of the
structure itself, when a substantial amount of structures is allocated.
Structure vectors group structures of the same type, allowing to store
the header and the type descriptor only once [9]. This optimization is
most beneficial when large amounts of structures are used, achieving
a speed-up of up to 15 %. Yet, while allocation becomes faster, field
access and especially type descriptor access become up to three to
four times slower [9]. However, the allocation of a big number of
structures is not very common in Racket (cf. section 3).

An effective run-time representation exists for R6RS Scheme
records [15] where each record has an associated runtime repre-
sentation, record-type descriptor (rtd), determining its memory
layout. When an rtd is created, the compiler calculates record sizes
and field offsets for this record type similar to the way presented
here. They have flat representation with inlined fields, quite similar to
structures Pycket. A special interface allows to store raw integers, un-
tagged floating point numbers, and raw machine pointers, in addition
to ordinary Scheme data types.

The representation of structures in Racket’s implementation is
related to our work, too. However, we deliberately chose to not in-
vestigate the implementation but rather base our approach solely on
the extensive documentation and the static and dynamic analyses. A
comparison of our implementation to Racket’s is part of future work.

8. CONCLUSION AND FUTURE WORK
We presented an analysis of record structure usage in Racket

and proposed optimizations that are fit for an efficient implementa-
tion. We considered three common approaches and devised a novel
optimization for immutable boolean fields. We applied these ap-
proaches to Pycket, a tracing-jit-based implementation of Racket,
and achieve a significant speed-up compared to Racket in provided
micro-benchmarks with a sufficient warm-up time. We evaluated the
impact of our optimizations with a set of micro-benchmarks.

Our results suggest further investigation of unboxing values, as
homogenised fields in structures make up about 85 % in Racket on av-
erage. Adaptive optimizations [18] show promising initial results and
may be applied to records in the future. Finally, once Pycket’s feature
coverage is sufficient, we will run a broader range of benchmarks.
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APPENDIX

A. COMPREHENSIVE BENCHMARK RE-
SULTS

The results of all benchmarks are presented in Table 1 (execution
time) and Table 2 (memory consumption). The first rows of these ta-
bles contain Racket numbers for references. The second row present
the unoptimized implementation. All subsequent rows represent im-
provements with each optimization, in an accumulated fashion, that
is, the last row represents Pycket with all optimizations presented
here. Benchmarks annotated with * make explicit use of booleans.
All error values are bootstrapped [10] confidence intervals for a 95 %
confidence level.

Table 1: Execution times (in ms) for Racket and Pycket (without optimizations, with flat structures, with inlined fields, with cells, and
with ibfe). Less is better.

VM / Optimization Create Create* Create/sup. Create/sup.* Predicate Access Mutate Binary tree Bin. tree* Parser

Racket 4982±134 5210±114 19 684±726 20 243±97 3585±105 2917±125 4306±223 1817±61 2046±82 1061±52
Pycket 7027±39 5683±134 35 779±1395 24 657±772 221±8 172±16 1214±14 4735±202 3959±205 715±61
+ Flat structure 6116±90 5245±140 20 575±742 14 132±160 227±10 162±5 1291±88 3133±126 2379±132 732±54
+ Inlined fields 4821±169 4002±122 14 682±261 10 654±104 226±11 177±10 1250±23 1976±136 1429±76 667±23
+ Cells 4886±70 3894±58 14 446±488 10 066±8 224±21 171±6 355±12 1850±115 1504±29 684±53
+ Booleans 4726±94 2586±77 14 317±432 5517±81 216±14 161±5 387±15 2016±109 1224±51 666±28

Table 2: Memory consumption (in MB) for Racket and Pycket (without optimizations, with flat structures, with inlined fields, with
cells, and with ibfe). Less is better.

VM / Optimization Create Create* Create/sup. Create/sup.* Predicate Access Mutate Binary tree Bin. tree* Parser

Racket 871.7±0.0 871.7±0.1 1923.9±0.0 1924.0±0.0 50.5±0.7 813.8±0.0 813.8±0.0 376.3±0.7 376.6±0.1 52.1±0.0
Pycket 1692.5±0.0 1462.5±0.0 5365.0±4.2 4882.6±3.9 6.5±0.0 769.6±0.0 769.7±0.0 875.7±0.1 747.2±0.1 33.3±0.2
+ Flat structure 1577.4±0.1 1347.6±0.0 3761.3±0.0 2841.6±0.0 6.5±0.0 769.5±0.0 769.7±0.0 587.0±0.1 457.7±0.1 34.7±0.5
+ Inlined fields 1232.7±0.0 1003.0±0.0 3071.5±0.0 2152.1±0.0 6.5±0.0 769.5±0.0 769.7±0.0 394.1±0.1 265.1±0.1 34.1±0.3
+ Cells 1232.8±0.1 1003.0±0.0 3071.5±0.0 2152.1±0.0 6.5±0.0 769.5±0.0 769.7±0.0 394.1±0.1 265.1±0.1 34.6±0.3
+ Booleans 1233.0±0.1 696.1±0.0 3071.8±0.1 1270.3±0.0 6.7±0.0 769.8±0.1 769.9±0.0 394.1±0.1 201.1±0.1 34.9±0.4
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