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Abstract

When implementing a new programming language construct, it is important to consider and
understand its implications on program semantics. Simply hacking compiler code, even in com-
bination with the use of a debugger, does not allow for easily keeping track of the global picture
of overall execution semantics. We present a graph-based implementation of the delMDSOC vir-
tual machine (VM) model in AGG, as a platform for experimenting with programming language
constructs. More specifically, given the nature of the delMDSOC model, it is aimed primarily
at languages supporting the modularization of crosscutting concerns, such as aspect-oriented or
context-oriented languages. Our delMDSOC implementation visualizes programs as graphs at
the VM level, in terms of well-known and intuitive concepts: objects, messages, delegation and
actors. Implementing new high-level language constructs involves expressing them in terms of
these concepts. Since delMDSOC is implemented as a graph rewriting system, program execu-
tion can be visually simulated and program state can be inspected at all times, providing insight
in the implications of the new language construct on execution semantics. We demonstrate our
approach by means of two language constructs: the context-oriented layer construct and a new
aspect-oriented construct, the “concurrent cflow” pointcut.

Keywords: virtual machine model, programming language development, modularizing
crosscutting concerns, graph rewriting

1. Introduction

New constructs are being added to programming languages regularly, sometimes leading to
language extensions or even completely new programming languages. For the language devel-
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oper, as well as the language user, it is crucial to understand the semantics of such new constructs,
and their implications on the execution semantics of programs written in this language.

New constructs are often simply “hacked in” by modifying compiler or interpreter software,
the semantics being established by their implementation. The language user then either relies on
high-level documentation, which is often lacking, or on the compiler or interpreter itself, using
it as a black box to figure out the semantics of such constructs.

This paper presents a platform that can be used to experiment with object-oriented language
constructs. This platform is based on the delMDSOC (delegation-based Multi-Dimensional Sep-
aration Of Concerns) virtual machine (VM) model [1] and its implementation in the AGG graph
transformation tool [2]. In essence, delMDSOC is a VM model that is designed as a compila-
tion target for programming languages aiming to increase modularization and enhance (multi-
dimensional) separation of concerns (MDSOC). Examples of such languages include aspect-
oriented programming [3], context-oriented programming [4] and role-based programming [5].
Much attention and effort is devoted to experimenting with new language constructs within this
fairly young area of programming language research [6, 7, 8, 9].

Our AGG implementation of delMDSOC visualizes programs as graphs at the VM level.
The behavior of the programs represented by these graphs is determined by a set of graph rewrite
rules [10] which constitute the operational semantics of delMDSOC. As such, AGG allows for
visual simulation of program execution by repeatedly transforming the program graph through
application of these rules. In between rule applications, execution can be paused and the entire
program state can be inspected and modified, including the VM code that each object imple-
ments, and even the runtime stack. Because program state is represented by a graph, it also
is possible to make backup copies thereof, such that execution can always be resumed from a
backup.

What makes this platform useful for experimentation is the fact that, unlike most intermediate
languages, delMDSOC’s abstraction level is much closer to a high-level programming language
than it is to a typical machine instruction set. Because the distance between the programming
language and the VM instruction set is decreased, it becomes easier to reason about the program-
ming language. More concretely, languages that are implemented on top of delMDSOC will be
expressed in terms of the following well-known high-level concepts: prototype objects, message
sending, delegation and actors. A wide range of language constructs can be created using these
building blocks [1, 11], due to the delMDSOC model’s dynamic nature: All message sends are
late-bound and delegation relations between objects can be modified at runtime.

The remainder of this paper is structured as follows: Sec. 2 provides an overview of the
delMDSOC machine model. Next, Sec. 3 presents the model’s operational semantics in depth.
In Sec. 4, we apply our semantics to two examples of language constructs: the existing context-
oriented layer construct and a new aspect-oriented construct, the “concurrent cflow” pointcut.
Sec. 5 discusses related work, and 6 concludes and briefly outlines future work.

2. Overview of the delMDSOC model

The delMDSOC machine model was originally introduced in [1]. In this section, we give an
overview of the model’s operation.

As the model is a prototype-based object-oriented environment, the model’s basic entities are
objects, which can communicate with each other by means of message passing. We opted for
prototype objects in favor of a class-based object-oriented model because we wanted the model
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Figure 1: An example of a composite object

to consist of a minimal amount of concepts, keeping it as simple as possible. As there is no
concept of classes in prototype-based languages, this was an easy choice to make.1

Objects can be connected to each other using delegation, resulting in a chain of objects, also
called a composite object. An example of such a composite object is shown in Fig. 1. During
message lookup, if an object receives a message it cannot understand, the message is delegated
to the next object in the chain, and so on, until a matching implementation is encountered in one
of the objects’ message dictionaries.

In delMDSOC, the first object in a composite object’s delegation chain is a so-called proxy,
which does not understand any messages at all. Its purpose is to serve as a fixed access point,
establishing the identity of the composite object. This is important because delegation chains
are not fixed, but may be modified at runtime. This mechanism allows for dealing with dynamic
deployment of crosscutting modules. In such a scenario, objects may be inserted into or removed
from delegation chains in order to dynamically modify a composite object’s behavior in response
to certain messages. The listCache object in Fig. 1 is an example of a crosscutting module
that is currently enabled, as it is inserted between the list proxy and the listObj object.
During message lookup, the self pseudovariable always remains bound to the receiver of the
message, i.e., the proxy, ensuring that lookup for messages sent by a composite object to itself
always starts at the front of the delegation chain.

In order to introduce concurrency into delMDSOC, we have opted for the actor-based model
of concurrency. Actors were chosen in favor of threads, also because of simplicity reasons: Be-
cause actors do not allow for shared state, issues such as deadlocking are avoided for the most
part. However, we do not adhere to the pure actor model, but rather take an approach similar
to the one employed in the E language [12], in which a distinction is made between actors and
objects: Actors act as containers of objects. An object can send an asynchronous message to
an object belonging to another actor, which results in this message being appended to the other
actor’s mail queue. The mail queue essentially is a buffer where messages are kept until the mes-
sage that is currently being processed has finished its execution. When this happens, the message
at the front of the mail queue is removed and is pushed onto the process stack. Although an actor
may at all times receive additional messages in its mail queue, it will not process them until it
has dealt with the messages currently residing on the process stack. Furthermore, executing a
message on the process stack may result in other message sends. If these messages target ob-
jects within the same actor, they immediately end up on the process stack, which means they are
processed synchronously. In short, communication between objects within one actor (intra-actor
communication) occurs synchronously, whereas communication involving two different actors
(inter-actor communication) occurs asynchronously by default. Asynchronous inter-actor com-
munication may result in a future object [13] being returned. Upon accessing a future’s value,
the actor is blocked until the value has been calculated. This blocking mechanism can be also
used in order to simulate synchronous inter-actor communication.

1If needed, classes can always be emulated using prototype objects in combination with delegation [1].
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Figure 2: Type graph of the delMDSOC model

2.1. The model’s operation
The delMDSOC model is described as a set of graph rewrite rules. These rules can be subdi-

vided according to the cycle of steps that each actor goes through:

1. Move the first message from the mail queue to the process stack. (This step is detailed in
Sec. 3.1.)

2. Perform the lookup procedure to find the message’s implementation, also called the mes-
sage body. (Sec. 3.2)

3. While the message body has not been executed completely:
(a) Fetch the next instruction from the message body.
(b) Perform some preprocessing on this instruction, if any. (Sec. 3.3)
(c) Execute the instruction. (Sec. 3.4)

4. Pop the message from the process stack and start over at step 1.

While the model’s graph rewrite rules can be matched in a non-deterministic order, they are set up
such that each actor will indeed follow the above sequence of steps. It should also be mentioned
that, while delMDSOC supports a whole set of different instructions, this paper will only focus
on a few of these instructions. Several instructions, such as integer addition, do not modify the
graph structure, but only attribute values, which is of limited interest in this context. Instead,
message sends and object (un)deployment will be discussed in depth in Sec. 3.4. These are more
interesting because the mapping of several high-level MDSOC constructs onto the delMDSOC
machine model will involve these instructions.

2.2. Type graph
Fig. 2 shows the type graph associated with our model, which specifies the model’s different

kinds of nodes and edges, and how both connect to each other. Three kinds of nodes are available:
actors, objects and messages. Node attributes are typed by Java classes.2 Object nodes contain

2It is important to note that we only make use of a minimal subset of Java’s functionality. Java expressions are only
used in order to read and update attribute values, but they are not allowed to cause side-effects to the graph structure.
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Figure 3: An intermediate state of a simple program

two attributes: name and messages. The name attribute is a String acting as a unique
identifier. The messages attribute is a message dictionary containing implementations for the
messages it understands. It has the MsgBodyMap type, which is a wrapper class around a hash
map, mapping each message name to a list of instructions.

Message nodes contain three attributes: name, curInstr and body. Once a message has
been looked up, the message body is stored in the body attribute as a MsgBody, a linked list
of Statements, the latter being a wrapper around a String. When a statement is executed,
it is removed from body and is then stored in the curInstr attribute, which represents the
instruction currently being executed.

Next to the three types of nodes, there also are several types of edges:

• The contains edge connects an object to the actor containing it.

• The delegate edge indicates the next object in a composite object’s delegation chain.

• The mailNext edges form an actor’s mail queue. If the source node of a mailNext
edge is an actor, the edge indicates the first message in an actor’s mail queue. Otherwise,
it indicates the next message in a mail queue.

• Analogous to the mailNext edge, the processNext edges are used to form an actor’s
process stack.

• The lookup edge indicates the object currently being checked in the message lookup
procedure. A lookupResult edge then indicates the object where a message was un-
derstood.

• The self edge indicates a message’s self object. Analogously, the param edge indicates
a message’s parameter object, used to pass parameters along with a message send.

• The future edge indicates that a message’s return value should be stored inside a future
object.

The graph in Fig. 3 illustrates an example that complies with the above type graph. It shows
an intermediate state of a running program that will calculate the value of Â3

c=1 c and store the re-
sult in aObj.s. It incorporates several of the model’s elements: There is one actor that contains
one composite object a. The actor has two pending messages in its mail queue and is currently
executing the instruction self.c=self.c+1, as shown in the message that is on the actor’s
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NAC

Figure 4: Process message rewrite rule

process stack. The rewrite rules described in the following section will give a general idea on
how the execution of this program will continue.

3. Graph rewriting semantics of the delMDSOC model

This section presents the essentials of delMDSOC’s semantics, in the form of a set of single-
pushout graph rewrite rules.3 Each graph rewrite rule contains at least two graphs: a left-hand-
side (LHS) and a right-hand-side (RHS). The application of a rule then consists of searching
for the rule’s LHS within the graph that we wish to transform. If a match was found, it will be
replaced by the RHS and the rule application will have succeeded; otherwise, the rule application
has failed. Optionally, a rule can also have multiple attribute conditions and negative application
conditions. An attribute condition (AC) is a Boolean expression that must evaluate to true in
addition to matching a rule’s LHS. A negative application condition (NAC) specifies a subgraph
that may not occur when matching a rule.

3.1. Processing messages in the mail queue
The graph rewrite rule in Fig. 4 comes into play when an actor has an empty process stack,

which is ensured by the rule’s NAC. If an actor’s process stack is empty, this means it is waiting
for new messages to process. The rule’s RHS removes the first message from the mail queue and
moves it onto the actor’s process stack. The message also receives a lookup edge, indicating
that the lookup procedure should start, which is handled by the rules in Sec. 3.2. It should be
noted that this rule will not work in the case where only one message is in the actor’s mail queue.
This issue was solved by making use of AGG’s amalgamated rules, which makes it easier to
create, maintain and combine variations on rules, rather than having to specify each variant as a
separate rule. Using this technique, a variant (not shown here) was created that handles the case
with one message in the mail queue.

3.2. Message lookup
The lookup procedure described in this section behaves exactly like the lookup procedure

discussed in Sec. 2. In case the desired message implementation is not found in the object cur-
rently indicated by the lookup edge, the rule in Fig. 5 matches. This is ensured by attribute
condition !msg.contains(m), which checks whether the object contains an implementation

3The complete set of graph rewrite rules as described in AGG is available at http://fots.ua.ac.be/
delmdsoc/.
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AC !msg.contains(m)

Figure 5: Iteration rule of the lookup procedure

AC msg.contains(m)

Figure 6: The end of the lookup procedure

for a message named m. Its RHS moves the lookup edge to the object’s delegate, such that the
lookup procedure continues there.

In the other case, if the desired implementation was found in the current object, the rule in
Fig. 6 matches. Its RHS copies the implementation into the message’s body attribute and the
lookup edge is changed into a lookupResult edge, indicating that the lookup procedure
has finished and that the body can now be executed.

3.3. Preprocess the current instruction

Before an instruction can be executed, some preprocessing may be required. Any references
to the self pseudovariable in an instruction are replaced by the name of the self object, as
indicated by the current message’s self edge. Similarly, references to formal parameters and
future objects can be resolved in the preprocessing phase.

Instructions that contain subexpressions that haven’t been evaluated yet are also handled
during preprocessing: There is a rule that will push a new message on the process stack that is
meant to evaluate this subexpression. Once this is finished and the message can be popped, the
subexpression’s resulting value is resolved in the original instruction.

3.4. Execute the current instruction

The intermediate language implemented by our machine model supports several different
types of high-level instructions:

There are the usual assignments, if statements, print statements and (implicit) return state-
ments, but there also are more interesting instructions for sending messages, resending messages
(analogous to the aspect-oriented proceed statement), creating new actors, cloning objects and
(un)deploying objects in delegation chains. This section concentrates only on sending messages
and object deployment, as these form the essence of the examples in Sec. 4.
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AC c.isSend() && c.getReceiver().equals(n)

String f = getUniqueName()

Figure 8: Inter-actor communication

3.4.1. Intra-actor communication
The rule handling communication between objects within the same actor, i.e., intra-actor

communication, is shown in Fig. 7. The first AC makes sure the current instruction has the
syntax of a message send and that its receiver equals the object with name n. (For example, the
instruction listObj.get(3) sends the message get to receiver listObj with parameter
3.) The second AC will check for the presence of the actual parameter object that is passed along
with the message send. For simplicity reasons, the delMDSOC model can currently only pass
one parameter; multiple parameters can be simulated by using this one parameter object as a
container. It also is possible to perform a message send without any parameters; amalgamated
rules are used here once again to define the variant of this rule without parameters.

Once this rule matches, the new message that will be sent is pushed onto the actor’s process
stack. As this message is now at the top of the stack, the other messages on this stack have to wait
until the new message has been looked up and executed. In other words, this is a synchronous
message send.

AC c.isSend() && c.getReceiver().equals(n)

c.getParameter().equals(p)

Figure 7: Intra-actor communication

3.4.2. Inter-actor communication
Sending messages between two different actors is handled by the rule in Fig. 8. This rule is

one of the few occasions where it becomes apparent that our graph rewriting rules do not use
injective matching, in which each node in a rule must be different from each other. This means
it could occur that both actors, node 1 and 2, are the same actor. To prevent this situation, a NAC
was added that ensures the two actor nodes may not be the same.

In contrast to intra-actor communication, the new message does not immediately end up at
the top of the receiving actor’s process stack, but it is added to the back of its mail queue. To

8

- 136 -



AC c.startsWith(“DEPLOY”)

c.getParameter(0).equals(m) && c.getParameter(1).equals(n)

Figure 9: The deployment instruction

retrieve the last message in the mail queue, transitive closure4 (marked by the asterisk on edge 8)
is used in combination with another NAC. The actor that initiated the message send can continue
immediately, meaning that message sends between different actors are asynchronous by default.

To be able to move the return value back to the sending actor once it is available, we make use
of futures [13]. In the rule’s RHS, a new object is created with a unique name f and a future
edge pointing to it; this is a future object. Once the message that was sent has been executed, the
return value will be stored inside this future object. In the meantime, the message that caused the
message send (node 3) will receive a reference to the future object as a temporary return value.
This reference can be assigned to fields and be passed around as a parameter without a problem,
even though the future object may still be empty. When accessing the future object however, the
actor will block until the return value is present in the future object. Once the return value is
available, another rewrite rule will make sure that accesses to the future object are replaced by
the return value contained within. All of this happens in a transparent manner, in the sense that
someone making use of delMDSOC does not need to be aware of the existence of future objects
to be able to use them. Synchronous inter-actor communication can be simulated using the
future’s blocking mechanism, which is done by making an asynchronous call and immediately
attempting to access its return value. An explicit SYNC instruction is available that provides this
functionality.

3.4.3. Deployment
The deploy instruction is a key component that allows the model to be used in an MDSOC

context. This instruction is used to insert an object within another specified delegation chain. For
example, when executing the statement "DEPLOY(objectA,objectB)", objectA will be
inserted between objectB and its delegate. The rule handling this instruction is shown in
Fig. 9. The attribute conditions of the rule express that the current instruction must be a deploy
instruction and that both of its parameters should match with the objects respectively named m
and n.

4AGG currently does not support transitive closures, so an additional type of edge is used to explicitly mark the last
message in a mail queue.
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Figure 10: Initial program state

4. Examples

We will now, by means of two examples, illustrate how the set of graph rewrite rules de-
scribed in the previous section, as well as their simulation in AGG, can be a useful tool while
experimenting with language constructs. The first example involves an existing construct that
forms the basis of context-oriented programming: layers. The second example introduces a new
variation on the aspect-oriented cflow pointcut, called concurrent cflow, or ccflow.

4.1. The context-oriented layer construct

Before diving into any details of the example, we will first give a brief introduction to context-
oriented programming [4]. The main idea behind context-oriented programming is that some
functionality may behave differently when executed in a different context. To this end, the layer
construct was introduced; a layer contains the behavioral variations of certain methods in a par-
ticular context. More concretely, alternate definitions of any method can be written within a layer.
These alternate definitions can then be explicitly activated, i.e. replace their original definitions,
whenever a particular dynamic scope is entered.

Listing 1 shows a simple context-oriented example that we wish to map to the delMDSOC
model. It is written in a ContextJ-like language [4], which is a context-oriented extension of
Java. In this example, two classes are present, Person and Employer; each of these defines
a toString method. We redefine the toString method of each class within the Verbose
layer. Also note the use of the proceed statement within this layer definition; this represents a
call to the original method definition. In Person.main, the layer is activated using the with
block construct. In other words, all code executed in the dynamic scope of the with block will
make use of the redefined toString methods.

Fig. 10 shows the corresponding representation of the initial state of this program in delMD-
SOC. (The messages and body attributes are hidden, as they would clutter the graph.) At this
point, the Verbose layer is not active yet. The main method is called by sending a main mes-
sage to object p1. Given that delMDSOC assumes an object-based environment, classes are rep-
resented as objects, just like their instances. Instances hold fields corresponding to the attributes
of their class, and delegate to the class object, which holds a method dictionary. Recall from
Sec. 2 that all objects are represented as a combination of a proxy and the actual object. Hence,
all information regarding a high-level object is captured by four machine-level objects: An object
representing the instance, an object representing the class and a proxy for each of these. Class
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class Person {
String name; Employer emp;
String toString() {return name;}
void main() {

Employer e=new Employer("Cosmo Spacely",
"Sprocketlane 23, Orbit city");

Person p=new Person("George Jetson", e);
with(Verbose) {

System.out.println(p.toString());
}

}
}

class Employer {
String name; String addr;
void toString() {return name;}

}

layer Verbose {
void Person.toString() {

return proceed() + "Employer:" + emp.toString();
}
void Employer.toString() {

return proceed() + "Address:" + addr.toString();
}

}

Listing 1: Example context-oriented program

objects can be reused, which is why p1 and p2, which are both instances of Person, partially
share the same delegation chain in Fig. 10. Apart from p1 and p2, there is also an Employer
instance e1. The Verbose layer is represented by the objects Verbose, Verbose_Person
and Verbose_Employer. The first implements the logic of layer activation and deactivation;
the other two contain the layer’s redefined toString methods. Because we are not dealing
with a concurrent program, only one actor node is present, which contains all objects (by design,
only objects that can receive messages need to be connected by a contains edge). The actor’s
mail queue holds a message main, which will be processed by removing it from the mail queue
and pushing it onto the process stack, looking up a corresponding method body in the delegation
chain of the receiver p1, and executing it.

Applying the graph rewrite rules relevant for this lookup process (cf. Sec. 3.2) will result in
the following definition of main being found in the Person class object:
...
Verbose.activate
PRINT(p2.toString)
Verbose.deactivate

Essentially, the with construct from Listing 1 was translated into two message sends to the
Verbose object: An activate message upon entrance of the scope, and deactivate upon
exit. A definition for these two messages is indeed provided in Verbose’s method dictionary,
where activate is defined as:
DEPLOY(Verbose_Person,Person)
DEPLOY(Verbose_Employer,Employer)
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Figure 11: Program state after activation

The instructions will cause the graph rewrite rule for deployment (cf. Sec. 3.4) to be applied,
resulting in the two objects being inserted in the delegation chains immediately after the object
provided as the second parameter. The definition of deactivate simply reverses this effect:
UNDEPLOY(Verbose_Person)
UNDEPLOY(Verbose_Employer)

Fig. 11 shows the situation where the layer has already been activated, the message toString
has been looked up in the delegation chain of p1 and a definition was found in Verbose_Person,
as can be inferred from the lookupResult edge between the message and Verbose_Person.
The latter, just like Verbose_Employer, has been inserted in the delegation chain of the ap-
propriate class object, as a consequence of the layer’s activation. After executing the toString
message, the Verbose layer is deactivated again and the delegation chains are restored to the
state in Fig. 10.

As the graph rewrite rules defining the operational semantics of delMDSOC have been spec-
ified using the AGG tool [2], the example outlined above can be simulated automatically. This
effectively visualizes the operational semantics of a context-oriented program in terms of ob-
jects, messages and delegation. From the above example we derive that classes are mapped onto
normal low-level objects, as are their instances, layers are represented by a set of objects for
each method they override and an object that implements the layer’s activation and deactivation,
respectively upon entrance and exit of the corresponding dynamic scope.

For language developers, being able to break down program execution in basic simulation
steps while visualizing object relations and program state is a useful tool in order to verify
whether a new language construct behaves according to desirable semantics.

For the language user, it may help in truly understanding the impact of a particular language
construct or in fact a whole programming paradigm.

4.2. The concurrent cflow pointcut construct
Consider the sample code in Listing 2, written in an imaginary aspect-oriented language

with support for actor-based concurrency. In this example, two actors are present, an Admin
and a Client, both of which can manipulate a database, independent from each other. At
any point however, the administrator may initiate a backup of the database. This can cause
a synchronization issue, in the sense that updating the database while the backup is created
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Figure 12: Initial object configuration

could render this backup file corrupt. A simple strategy to prevent this from happening is to
block any attempts to update the database during the backup operation. This is expressed by the
BackupLock aspect, which makes use of a special “concurrent cflow” construct, or ccflow,
in its pointcut. This construct is a concurrent variant of the aspect-oriented cflow pointcut
construct as present in AspectJ [3]. The intuition behind this aspect is that, for the duration of the
backup call in the Admin actor, all calls to the updatemethod in the Client actor should be
intercepted and result in an error message. The expressiveness of the existing cflow construct
is insufficient in this scenario, since it can only be applied within a single thread of control. Any
update call will be in another control flow than the one of backup, as they are executed by
different actors. In Sec. 4, we will show how delMDSOC can help in establishing the semantics
of this new ccflow construct.
actor Admin { actor Client {
DbConnection conn; DbConnection conn;
void backup() { List read(...) {

conn.backup(); return conn.query(...);
} }

} void update(...) {
conn.query(...);

}
}

aspect BackupLock {
around():ccflow(execution(Admin.backup))
&& execution(Client.update) {

print("ERROR: access denied");
}

}

Listing 2: Example usage of the ccflow construct

The initial object configuration of the example in its delMDSOC representation is shown
in Fig. 12. The figure shows three composite objects representing the database’s administrator,
admin, and two instances of client users, client_1 and client_2. The database itself and
any class objects5 are not shown here, as they do not play a significant role in this example.

The pointcut needed to capture all database updates across all clients during a backup opera-
tion is as follows, in an AspectJ-like syntax:

5Classes can be simulated in a prototype-based environment by letting objects representing instances delegate to an
object that represents the class.
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Figure 13: After deploying the backupLock objects

ccflow(execution(Admin.backup)) && execution(Client.update)

The ccflow pointcut construct is an extension of the regular cflow construct. It captures all
join points across all actors in the duration of the specified control flow, whereas regular cflow
can only capture the join points within a particular control flow.

To be able to capture the control flow of a backup operation, the object backupCapture
has already been deployed in the admin composite object. The example scenario will be
initiated once a backup message is sent to admin. This message will be intercepted by
backupCapture before it can reach adminObj, which implements the backup operation
itself. The implementation of the backup message in the backupCapture object can be
expressed as follows:
SYNC(client_1.deployLock) // Deploy backupLock at client_1
SYNC(client_2.deployLock) // Deploy backupLock at client_2
RESEND // Do the backup operation
client_2.undeployLock
client_1.undeployLock

The first two instructions will deploy a clone of the backupLock object in each client’s del-
egation chain. The backupLock objects will intercept any update message; its implemen-
tation of update contains our aspect’s advice; it simply prints an error message stating that
the database may currently not be updated. Also notice the use of the SYNC construct, first
mentioned in Sec. 3.4.2. It indicates that the enclosed inter-actor message send should be syn-
chronous. This ensures that our aspect is deployed before the backup operation is started. The
program’s current state after the two backupLock objects have been deployed is shown in
Fig. 13. At this point, the actual backup operation can safely proceed. This is done with the
RESEND statement; it resends the backup message starting at backupCapture’s delegate,
adminObj. Once finished, we have left the control flow of the backup operation, so we can
revert back to the original object configuration by undeploying the backupLock clones. All
users are now free to modify the database once again.

A few remarks should be made regarding this example: Firstly, the solution presented here
assumes that the backup operation does not contain any recursive calls. If a recursive backup
call were made, it would be intercepted by the backupCapture object again, which is not
desired. This can be solved by letting the backupCapture object undeploy itself before the
backup operation is started and then redeploying itself once the operation has finished. A second
remark about this solution is that our aspects, being the backupLock objects, are deployed
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per instance. This allows the backupLocks to keep their own separate state, which could be
used, for example, to maintain a separate log of attempted database updates per client. However,
this comes at the price of added complexity: The fact that clients can be added and removed at
runtime should also be taken into account. While not shown in this example, this is handled by
intercepting the instantiation of new clients, i.e., intercepting the new message that is sent to the
client class object. For every new client that is created, a copy of the backupLock is deployed
into the client’s delegation chain. Additionally, the backupCapture object is notified of ev-
ery client that is added, who will maintain a list of all available clients. Whenever the backup
operation finishes, backupCapture will use its list of clients to undeploy all backupLock
instances.

5. Related work

In the field of MDSOC languages, several different semantics are available, especially for
aspect-oriented languages. Typically, such semantics are expressed as a structural operational
semantics [14, 15, 16, 17]. However, there are a few instances in which graph rewriting is
used: In [18], a graph-based operational semantics is provided for an aspect-oriented extension
of Featherweight Java, where it is used for verification purposes. The idea of a machine model
as a target for a multitude of MDSOC paradigms is not present however. This is apparent, for
example, in the fact that an explicit proceed stack is modelled, in order to accommodate for the
corresponding high-level language construct.

There are also a few instances of intermediate languages taking a high-level approach: The
SUIF [19] infrastructure provides a high-level object-oriented intermediate representation and a
toolkit for mapping programming languages onto this intermediate representation. This infras-
tructure is used as a vehicle to experiment with compiler optimization techniques for languages
such as C and Fortran. While not the primary focus of our model, this suggests that delMDSOC
may be a useful platform to experiment with MDSOC-specific optimization techniques.

More recent work includes the C Intermediate Language (CIL) [20], which provides a high-
level representation of C programs. Similar to the delMDSOC model, CIL aims to rely on a
minimal amount of concepts, making it easier to reason about C programs. Rather than using
CIL for experimentation purposes, it is used for analyzing program properties such as memory
safety and for performing source-to-source program transformations.

6. Conclusion and Future Work

This paper has introduced the delMDSOC virtual machine model as a platform to experiment
with language constructs. The model’s graph-based semantics in combination with the AGG tool
allow the language developer to simulate programs making use of the model. This simulation is
well-suited for experimentation in the sense that a program’s entire state is visible; any aspect of
it can be freely modified whilst the simulation is paused; the program’s state can also be copied
and stored, such that simulation can always resume from that point. However, a scalability prob-
lem does arise due to the fact that the entire state is visible. Therefore, our current approach
is only applicable to small toy examples, which may not be sufficient for experimenting with
more complex language constructs. Improved graph rewriting tool support should help signif-
icantly though: There is a need for better ways of navigating large graphs, improved layouting
algorithms and better means to filter out the information that currently is irrelevant to the user.
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Figure 14: Constructing a new language with delMDSOC

The delMDSOC model itself is not yet considered to be in a finalized state. For example,
the fact that the concurrency model is currently actor-based, is not a dogma. In fact, graph
rewriting has been used before to model different approaches to concurrency, including process
algebra [21] and Petri nets [22].

Regarding the experimentation platform itself, there also are several areas of future work that
can be explored: Currently, the translation of programs into an AGG representation is a manual
process. Ideally, this would be an automated process for each language. One approach would
be to write a parser that uses the AGG API as a backend in order to generate an appropriate
delMDSOC input graph. Another approach would be to have the parser only generate an AST in
AGG format, and apply graph rewriting within AGG once more in order to transform the AST
into an appropriate delMDSOC input graph. Fig. 14 illustrates the latter approach.

Another area of future work deals with the use of delMDSOC as a common framework in
which MDSOC languages can be compared and integrated. The model may also be used for
verification purposes, e.g., one can investigate the effects of the ordering of objects within a
delegation chain or the condition under which it is safe to deploy or undeploy objects in remote
actors.
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