
Transaction Layers
Controlling Granularity of Change in Live Programming Environments

Toni Mattis∗ Patrick Rein∗ Robert Hirschfeld∗,‡

∗Hasso Plattner Institute, University of Potsdam, Germany
‡Communications Design Group (CDG), SAP Labs, USA; Viewpoints Research Institute, USA

{firstname}.{lastname}@hpi.uni-potsdam.de

Abstract
Modifying source code in a live programming environment
changes the behavior of currently running programs immedi-
ately. When complex changes affect multiple locations in the
code before reaching a consistent state, running programs
are in danger of “de-railing” when their control flow reaches
the yet incomplete “construction site”.

Context-oriented Programming provides layers, which
encapsulate code that would otherwise be scattered over
many modules and can be activated to jointly adapt program
behavior at run-time.

We propose to transparently collect and group changes
to the code in a COP layer and defer its activation until the
programmer deems its change to be completed. Additionally,
layer deactivation serves as immediate undo operation on the
group of changes.

We present and discuss a Squeak/Smalltalk prototype
consisting of a code editor, which provides control over
when and where such a group of changes is active, and an
extension of Squeak’s COP implementation ContextS/2 re-
quired for representing most code changes in a layer.

Categories and Subject Descriptors D.1.5 [Programming
Techniques]: Object-oriented Programming; D.2.6 [Soft-
ware Engineering]: Programming
Environments—Interactive environments

General Terms Context-oriented Programming, Live Pro-
gramming, Tools, Self-sustaining Systems

Keywords Transaction Layer, Granularity of Change, Smalltalk,
COP

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, contact
the Owner/Author(s). Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax +1 (212)
869-0481.

COP’16, July 17-22 2016, Rome, Italy
Copyright c© 2016 held by owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4440-1/16/07. . . $15.00
DOI: http://dx.doi.org/10.1145/2951965.2951969

1. Introduction
Live programming environments support changing the source
code of a program at run-time, such that changes quickly
emerge in the running process. This enables programmers to
obtain immediate feedback after every incremental change[14].
Typical examples include Smalltalk[3], Lively[8], and some
educational environments like Etoys[2] and Scratch[11].

Transforming a source code modification into a change in
the executable representation occurs at a predefined level of
granularity. For example, in
Squeak/Smalltalk[7], every time the programmer saves a
method or class, it is being compiled and replaces the previ-
ous executable code, i.e., the meta-objects holding the byte-
code or representing the class structure. In live programming
environments, changing the executable representation also
affects running computation immediately.

For groups of changes and refactorings, developers can
often anticipate that multiple translation units will be af-
fected. Executing a partially completed change can, how-
ever, cause running instances to “de-rail” into inconsistent
state or incompletely implemented code paths. Having re-
moved code from one method to insert it in another method
later is a typical example of a temporary inconsistency which
may yield undesired computation if executed. Currently, de-
velopers have to figure out an order in which modifications
keep the running program on track, or stop and restart the
program, thereby forfeiting the benefits of a live environ-
ment.

Context-oriented programming (COP)[5] is an approach
to modularizing cross-cutting concerns. The particular fam-
ily of COP implementations we are concerned with intro-
duces layers, which contain code that can be activated or
deactivated to jointly modify behavior across multiple mod-
ules. Layer activation is composable, i.e., multiple layers
can be active at the same time and compose their behav-
ioral modifications. Throughout this paper, we will refer to
layer-based context-oriented programming when mention-
ing COP.

We argue that changing the executable representation in
response to a code change (translation) and changing the

behavior of a running program instance (emergence) can
be treated as two separate steps. While the programmer
may want a single modification, such as a method, to be
syntax-checked, compiled and become testable, the whole
running program should only commit to the new behavior
once a particular group of more primitive changes has been
completed.

By interpreting the set of changes as a COP layer, the
activation of this layer at run-time can be deferred to a point
where programmers have completed their coherent unit of
modification (Figure 1).

In section 2, we give a small example to illustrate the
problem. In section 3 we propose an approach to solve this
problem. A prototypical implementation of this concept is
outlined in section 4. Limitations and directions of future
work are examined in section 5 and section 7 summarizes
our results.

2. Example
The following example represents a simple refactoring sce-
nario in Smalltalk to demonstrate the effects of method-level
change granularity. Consider an application which contin-
uously queries the Twitter API and indexes the resulting
Tweet instances. The Index class responsible for main-
taining the index currently runs the following code repeti-
tively for each incoming tweet:

1 Index ⇒ indexTweet: aTweet
2 | hashtags |
3 hashtags := aTweet words
4 select: [:word |
5 word beginsWith: ’#’].
6 hashtags do: [:hashtag |
7 self dict at: hashtag
8 put: (aTweet id)]

The programmer currently reviewing this method decides
to move the part which selects hashtags (Lines 3 to 5) to the
Tweet class, resulting in the following code:

1 Index ⇒ indexTweet: aTweet
2 aTweet

:::::::::
hashtags do: [:hashtag |

3 self dict at: hashtag
4 put: (aTweet id)]
5

6

7 Tweet ⇒ hashtags
8 ↑ self words select: [:word |
9 word beginsWith: ’#’]

Keeping in mind that the indexTweet method may be
called by the running indexer at any time, the programmer
has to consider creating the Tweet⇒hashtags method
before replacing code in Index⇒indexTweet:. Other-

A B

A

A
B
1

B
2Code

Executable

Program

B
1

B
2 Layer

Figure 1. Interdependent changes are translated into a layer
which gets activated when deemed ready. Joint behavior and
state of both changes emerge atomically.

wise, the
:::::::::
hashtags message send in line 2 would fail with

a MessageNotUnderstood exception1.
While this situation is manageable by experienced pro-

grammers without significant mental load, it serves as mini-
mal example for the family of problems we aim to address.

3. Transaction Layers
For the scope of this paper, we focus on class-based single-
inheritance OOP. The following types of fundamental edit-
ing operations are common in such environments:

• Changing the source code of a method
• Adding or removing a method
• Adding or removing an instance variable
• Changing the superclass of a class
• Adding or removing a class

We consider renaming operations being a composition of
add and remove steps.

We aim to capture these editing operations in a COP layer
that is not activated by default. We call this layer transaction
layer, because it describes a set of changes to our system that
is only consistent as a whole.

Operations on Transaction Layers The following work-
flow operations should be supported by code editing tools:

• Open a new transaction layer. From now on, each change
is compiled into this initially empty layer, not into the
base system. The code shown in the editor includes all
changes in the currently open transaction layer.

• Test / Work with a layer. Changes in this layer are scoped
to either a test runner or a workspace, but not all running
instances of this code.

1 A standard Smalltalk debugger would allow the programmer to correct the
implementation and retry executing the exception site, however, exception-
driven workflows are not always feasible or desired.

• Activate the open layer (do). The changes collected by
this layer become globally effective but not yet part of
the persistent code base.

• Deactivate an active layer (undo). This effectively undoes
the behavioral modifications but does not discard code
changes.

• Commit a layer, such that changes are permanently
merged into the code base.

• Abort the open transaction layer. Changes now emerge
immediately again, edits from the aborted layer are no
longer visible in the editor. It is up to implementation
details whether the layer is being preserved for later re-
use.

We do not claim that this particular set of operations is
complete or orthogonal, however, it yields a pragmatic set of
operations that supports our proposed workflow.

Desired COP Features Basic COP implementations, such
as ContextS/2, only support layered methods. This is al-
ready sufficient to collect all changes to method code. A tool
should, as soon as there is an open transaction layer, encode
all method changes as partial methods and display the par-
tial method of the currently open layer instead of the base
method.

In order to capture changes to classes themselves, we as-
sume the underlying COP implementation to provide layered
classes. The layer itself is required to support the following
run-time adaptions:

• Layer-local instance variables as proposed in the L
language[6]. Only partial methods in this layer can ac-
cess them on instances of the specified class, thereby
implementing transactional isolation. When the transac-
tion layer is being committed, they are added to their
respective classes in the base system.

• Blocked methods and variables. Other methods are for-
bidden access to these variables and methods. Upon com-
mit, they are removed from their respective classes in the
base system.

• Dynamic super binding. The method resolution order can
be influenced by the layer, such that it can redirect super
calls to a different class than in the base system.

4. A Smalltalk Prototype
To build a code editor in Squeak/Smalltalk that fulfills the
requirements stated in section 3, we first extend a COP im-
plementation for Squeak/Smalltalk, ContextS/2, to support
layered classes. We then use the tool building environment
Vivide to build a Smalltalk-style system browser that sup-
ports transaction layers.

Using Vivide and ContextS/2 to build tools for context-
oriented software development has been explored by Taeumel

et al.[13], which is also the first public appearance of Con-
textS/2.

4.1 ContextS/2 and State Extension
Layered Methods ContextS/2 originally implements lay-
ered methods by replacing the CompiledMethod ob-
ject in the method dictionary of a class by a wrapper
LayeredMethod, which contains the compiled base method
and all partial methods indexed by layer name. Layers are
identified only via their name, but a reified Layer object
will be created lazily once a symbol is being used as layer
name.

When a layered method is being called, it asks the cur-
rently running Process for active layers and invokes the
partial method associated with the topmost layer.

If a class receives a new method and its source con-
tains a <layer: #myLayer> pragma at the beginning,
the method is compiled and placed in the wrapper’s partial
method dictionary at key #myLayer, otherwise it creates
or replaces the base method. #myLayer withLayerDo:
[...] activates the layer by notifying the process that
#myLayer should be added to the stack of active layers,
executes the block, and finally removes the layer from the
process.

Layered State Our extension adds a doubly nested map-
ping (variable name → (instance → value))
to each layer, which holds dynamic state. In addition, layers
carry a blacklist of blocked variables.

The ClassDescription class, of which regular classes
are instances, stores a list of layered variable names specific
to this class. They will be subject to a special lookup proce-
dure upon compilation.

Resolution of these variables is realized in the com-
piler, but implemented as a COP layer itself to scope com-
piler modifications to our tools only. The compiler checks
whether an instance variable is contained in the list of lay-
ered instance variables of the ClassDescription and,
if so, compiles a specialized lookup into the method, that
asks the active layers for a value. Blocked variables com-
pile without error (in contrast to removed variables), but will
signal a run-time error when accessed.

4.2 Tooling
Using Vivide, we created a three panel browser, which is
typically seen in Smalltalk environments and depicted in
Figure 2 with the example from section 2.

After clicking the Open button, which changes to Abort

while a transaction layer is open, the programmer can start
writing code in the transaction layer. The accumulated num-
ber of changes is displayed and acts as a reminder of how
old the transaction layer is. Try it activates the transaction
layer, while Test it opens a modified test runner, which ex-
ecutes the test suite inside the currently open transaction
layer. Commit merges changes back into the system.

Figure 2. Code browser with an active transaction and buttons for transaction control (highlighted).

Implementation of Changes Transaction layers receive a
random identifier upon creation. As long as a transaction
layer is open, a save action (CTRL + S) results in the fol-
lowing steps:

If a method has been edited, the method source code
is rewritten to contain a pragma <layer: #id>, with
id being the random ID of the current transaction layer.
The rewriting is implemented using an Ohm/S attribute
grammar[10]. Due to the pragma, the compiler translates
the rewritten source to a partial method.

If the class is being edited, current instance variables will
be compared to the last change. Added instance variables
will be moved to a list of layered variables of the class,
removed variables will be moved to the blacklist of the layer.

Limitations and Non-controllable Changes
Changing the set of classes is not transactional, yet. This
is not a major concern given the way Squeak works: First,
a new class does not have any effect, except in code that
explicitly monitors the global dictionary of classes, such as
code browsers and editors. Second, since classes are bound
during compilation, class deletion or renaming (effectively
copying the class under a new name) has no immediate
effect. Methods continue to use the old class and so do
live instances. Introducing new classes, renaming classes,
or removing references to an obsolete class require method
changes and recompilation, which gets captured by the open
transaction layer.

Changes to the superclass are not captured, as our exten-
sion of ContextS/2 has no support for dynamic super binding
yet. Also, only a single transaction layer can be opened per
code editor at the moment.

5. Discussion and Future Work
Invasiveness of Our Tooling Transactional change man-
agement gives rise to a trade-off: On the one hand, being
aware of the state of the transaction layer and remembering
to activate and regularly commit the layer creates additional
mental load. On the other hand, changes can be implemented

in any order coming to mind, possibly reducing frustration
by not being able to just program without running into fail-
ure states. Under which conditions our proposed workflow
increases productivity remains to be shown.

As it stands, our tool requires careful manual interaction
with the transaction layer. If a particular change crashes the
application because no transaction layer was open, it is not
yet possible to retroactively move the change to a layer and
recover the application state.

Interaction with Tests From preliminary experience with
our prototype we suspect that testing a set of changes be-
fore letting them emerge boosts confidence. This aligns well
with test-driven workflows. A possible extension would be
to always maintain an open transaction and automatically
commit if tests are green under local layer activation, then
immediately start a new transaction. This way, changes can
emerge during test runs but not in a live instance until they
are “safe”. If testing is not done upfront, the tool might pre-
vent the transaction layer from committing if the change is
not covered by tests.

Changes from External Sources Changes often originate
from external sources, e.g. loading changes from version
control or from external files. Especially in live program-
ming environments, loading a faulty revision may render
the whole environment unusable, or the update introduces
new dependencies which also need to be loaded before it
can be safely applied. Loading external changes into a trans-
action layer enables experimentation in a sandboxed, easily
reversible manner before merging them.

This extends to dynamically loaded code as well, e.g. the
program itself may employ a transaction layer to exercise
tighter control over a third-party library or plug-in. However,
this cannot be considered a sandbox, since a locally active
layer can still cause global effects.

Capturing Changes to Layers As we use COP to build a
tool for only class-based OOP, we relinquish further poten-
tial for COP usage within this tool. A transaction mechanism

which captures changes to layers as well might be useful to
circumvent this limitation.

This gives rise to explore higher-order layers, which are
capable of runtime adaptions that jointly modify classes and
layers. The exact semantics of this concept remain to be de-
fined, yet this idea indicates that transactional editing tends
to add a new dimension of dispatch to whatever program-
ming model is being edited.

6. Related Work
CoExist Steinert et al.[12] proposed an environment which
creates a new version for every individual change. The Co-
Exist environment allows programmers to go back in time,
run multiple versions simultaneously and compare them not
only as code, but also as running instances. Granularity can
be modified retroactively by grouping multiple correlated
changes, which can even be used as change sets in a version
control system. On the one hand, programmers are freed
from remembering to explicitly start and commit a new ver-
sion when using CoExist, on the other hand they cannot
choose to defer changes from being applied instantly, only
revert in case of failure. A combination of both scenarios
gives rise to promising future work.

Development Layers Lincke et al.[9] addressed the prob-
lem of breaking development tools while modifying them
within themselves. This particular problem of self-supporting
live systems has been solved using the same idea of collect-
ing changes in a COP layer. This layer is activated for an-
other instance of the modified tool, such that the new version
can be tried without breaking the old version used for edit-
ing. The size of a change captured in a development layer is
intended to be much larger than our incremental layers and
the presented implementation in a prototype-based language
is largely different from a class-based, object-oriented envi-
ronment. However, our proposed tool integration and merg-
ing of changes directly follows the direction of future work
outlined in the Development Layers paper.

Changeboxes Changeboxes, proposed by Zumkehr et al.[1,
15], allow multiple versions of a set of classes to co-exist.
A changebox is similar to a layer, as message lookup can be
redirected to a particular version of a method depending on
the active changebox. Similar to development layers, their
scope extends to a larger change, and they are suited for
on-the-fly deployment of new versions. A key feature is that
changeboxes can be merged to add up changes from differ-
ent sources. The same effect as merging changeboxes can be
achieved by activating multiple transaction layers.

Transactional Contexts The work of Gonzlez et al.[4] on
Transactional Contexts demonstrated that atomic, isolated,
and abortable transactions can be managed using COP by
layering the underlying computation model. While their ap-
proach is logging changes to the application state (objects

in our terms), we apply this concept of logging changes to
behavior expressed through meta-objects.

This points towards a solution that unifies both, treating
objects and meta-objects as state that can be jointly adapted
transactionally. Further work in this direction could bridge
the gap between state and behavior with regard to transac-
tional change management.

7. Conclusion
We presented an idea to decouple translation and emergence
of changes in a live programming environment using layers
as translation target. This mitigates the problem of incom-
plete changes emerging in running programs and thereby
provoking errors. Moreover, we presume that the presence
of a safety net and the option of trying out the change in a
sandboxed way increase confidence in a larger change. The
effectiveness of trading in careful anticipation for transac-
tion layers and the tools associated with them remains to be
shown.

References
[1] M. Denker, T. Grba, A. Lienhard, O. Nierstrasz, L. Reng-

gli, and P. Zumkehr. Encapsulating and Exploiting Change
with Changeboxes. In Proceedings of the 2007 International
Conference on Dynamic Languages: In Conjunction with the
15th International Smalltalk Joint Conference 2007, ICDL
’07, pages 25–49. ACM, 2007.

[2] B. Freudenberg, Y. Ohshima, and S. Wallace. Etoys for one
laptop per child. In Creating, Connecting and Collaborating
through Computing (C5) 2009, pages 57–64. IEEE, 2009.

[3] A. Goldberg and D. Robson. Smalltalk-80: The Language and
Its Implementation. Addison-Wesley Longman Publishing
Co., Inc., Boston, Massachusetts, USA, 1983.

[4] S. Gonzlez, M. Denker, and K. Mens. Transactional Con-
texts: Harnessing the Power of Context-oriented Reflection. In
International Workshop on Context-Oriented Programming,
COP ’09, pages 3:1–3:6. ACM, 2009.

[5] R. Hirschfeld, P. Costanza, and O. Nierstrasz. Context-
Oriented Programming. Journal of Object Technology,
March-April 2008, 7(3):125–151, 2008.

[6] R. Hirschfeld, H. Masuhara, A. Igarashi, and T. Felgentreff.
Visibility of context-oriented behavior and state in L. Journal
of the Japan Society for Software Science and Technology
(JSSST) on Computer Software, 32(3):149–158, 2015.

[7] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and A. Kay.
Back to the future: The story of Squeak, a practical Smalltalk
written in itself. In ACM SIGPLAN Notices, volume 32, pages
318–326. ACM, 1997.

[8] D. Ingalls, K. Palacz, S. Uhler, A. Taivalsaari, and T. Mikko-
nen. The Lively Kernel: A self-supporting system on a web
page. In Proceedings of the Workshop on Self-Sustaining Sys-
tems (S3) 2008, pages 31–50. Springer, 2008.

[9] J. Lincke and R. Hirschfeld. Scoping Changes in
Self-supporting Development Environments Using Context-
oriented Programming. In Proceedings of the Interna-

tional Workshop on Context-Oriented Programming, COP
’12, pages 2:1–2:6. ACM, 2012.

[10] P. Rein, M. Taeumel, and R. Hirschfeld. Gramada: Immedi-
acy in Programming Language Development. Submitted for
Review to ACM Symposium for New Ideas, New Paradigms,
and Reflections on Everything to do with Programming and
Software (Onward!) 2016.

[11] M. Resnick, J. Maloney, A. Monroy-Hernndez, N. Rusk,
E. Eastmond, K. Brennan, A. Millner, E. Rosenbaum, J. Sil-
ver, B. Silverman, and Y. Kafai. Scratch: Programming for
All. Communications of the ACM, 52(11):60–67, 2009.

[12] B. Steinert, D. Cassou, and R. Hirschfeld. CoExist: Over-
coming Aversion to Change. In Proceedings of the 8th Sym-
posium on Dynamic Languages, DLS ’12, pages 107–118.
ACM, 2012.

[13] M. Taeumel, T. Felgentreff, and R. Hirschfeld. Apply-
ing Data-driven Tool Development to Context-oriented Lan-
guages. In Proceedings of 6th International Workshop
on Context-Oriented Programming, COP’14, pages 1:1–1:7.
ACM, 2014.

[14] S. L. Tanimoto. A Perspective on the Evolution of Live Pro-
gramming. In Proceedings of the 1st International Workshop
on Live Programming, LIVE ’13, pages 31–34. IEEE Press,
2013.

[15] P. Zumkehr. Changeboxes – modeling change as a first-class
entity. Master’s thesis, University of Bern, 2007.

	Introduction
	Example
	Transaction Layers
	A Smalltalk Prototype
	ContextS/2 and State Extension
	Tooling

	Discussion and Future Work
	Related Work
	Conclusion

