
Technische Berichte Nr. 53

des Hasso-Plattner-Instituts für
Softwaresystemtechnik
an der Universität Potsdam

Web-based
Development
in the Lively Kernel
Jens Lincke, Robert Hirschfeld (Eds.)

Technische Berichte des Hasso-Plattner-Instituts für
 Softwaresystemtechnik an der Universität Potsdam

Technische Berichte des Hasso-Plattner-Instituts für
Softwaresystemtechnik an der Universität Potsdam | 53

Jens Lincke | Robert Hirschfeld (Eds.)

Web-based Development in the Lively Kernel

Universitätsverlag Potsdam

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind
im Internet über http://dnb.de/ abrufbar.

Universitätsverlag Potsdam 2012
http://info.ub.uni-potsdam.de/verlag.htm

Am Neuen Palais 10, 14469 Potsdam
Tel.: +49 (0)331 977 2533 / Fax: 2292
E-Mail: verlag@uni-potsdam.de

Die Schriftenreihe Technische Berichte des Hasso-Plattner-Instituts für
Softwaresystemtechnik an der Universität Potsdam wird herausgegeben
von den Professoren des Hasso-Plattner-Instituts für Softwaresystemtechnik
an der Universität Potsdam.

ISSN (print) 1613-5652
ISSN (online) 2191-1665

Das Manuskript ist urheberrechtlich geschützt.

Online veröffentlicht auf dem Publikationsserver der Universität Potsdam
URL http://pub.ub.uni-potsdam.de/volltexte/2012/5560/
URN urn:nbn:de:kobv:517-opus-55605
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-55605

Zugleich gedruckt erschienen im Universitätsverlag Potsdam:
ISBN 978-3-86956-160-8

I

Abstract

The World Wide Web as an application platform becomes increasingly important.
However, the development of Web applications is often more complex than for
the desktop. Web-based development environments like Lively Webwerkstatt can
mitigate this problem by making the development process more interactive and
direct. By moving the development environment into the Web, applications can
be developed collaboratively in a Wiki-like manner.

This report documents the results of the project seminar on Web-based
Development Environments 2010. In this seminar, participants extended the
Web-based development environment Lively Webwerkstatt. They worked in small
teams on current research topics from the field of Web-development and tool
support for programmers and implemented their results in the Webwerkstatt
environment.

Zusammenfassung

Das World Wide Web wird immer mehr zu einer Anwendungsplattform. Die
Entwicklung von Web-Applikationen ist jedoch oft komplexer als die Erstellung
traditioneller Desktop-Anwendungen. Web-basierte Entwicklungsumgebungen
wie Lively Webwerkstatt vereinfachen das Entwickeln, da der Programmierprozess
interaktiver und direkter wird. Zudem ist es möglich, dass ähnlich wie in einem
Wiki Entwickler bei der Anwendungserstellung zusammenarbeiten.

Dieser Bericht dokumentiert die Ergebnisse des Projektseminars Web-basierte
Entwicklungsumgebungen 2010. Im Rahmen des Seminars haben sich die Teil-
nehmer mit aktuellen Fragen aus dem Bereich der Web-Entwicklung und Werkzeu-
gunterstützung für Programmierer beschäftigt und die bestehende Web-basierte
Entwicklungsumgebung Lively Webwerkstatt entsprechend erweitert.

Table of Contents

Lively HTML . 1
David Jaeger and Robert Krahn

Lively Code Database . 13
Tilman Giese and Marko Röder

A Web-based GridBagLayout . 25
Alexander Hold and Stefan Reichel

Collaboration in Lively . 37
Fabian Garagnon and Kai Schlichting

Bringing TEX’s Paragraph Layout Algorithm to the Lively Kernel 45
Tobias Pape

Lively HTML
Seminar Web-based Development Environments

David Jaeger and Robert Krahn

Hasso-Plattner-Institut, Potsdam
{firstname.lastname}@student.hpi.uni-potsdam.de

Abstract. The Lively Kernel is a web-based development and runtime
environment using the Morphic framework as its user interface. Morphic
requires a graphic system that is capable of applying 2D transformations
to graphical objects as well as support the modification of other graphical
attributes. Currently, the Lively Kernel uses SVG for rendering. However,
when displaying many graphical objects the performance of current SVG
rendering systems is not sufficient to provide a satisfying usability. This
is especially the case when a lot of textual content is rendered.
The goal of this project is to implement and evaluate an HTML-based
rendering system. We assume that Web browsers perform better render-
ing HTML. Additionally, we think that this approach will have other
advantages, like enabling the usage of native widgets. We present our
implementation approach and describe how the graphical requirements
of an interactive system like the Lively Kernel can be mapped to HTML.

1 Introduction

The Lively Kernel (also Lively) is a collaborative and self-sustaining development
and runtime environment for Web applications. It provides a rich and interactive
graphics system by implementing the Morphic user interface [7, 8]. Currently
Lively’s rendering system is based on SVG1 integrated into an XHTML document.
The XHTML document can be loaded and modified in a Web browser.

The current rendering system is very flexible, giving a Lively developer direct
control over how graphical elements are displayed. However, when visualizing
larger amounts of objects like displaying several hundred classes in a system
browser, the system becomes slow and unresponsive. This lessens the usability
of Lively as a development platform.

In this paper we present a prototypical implementation of a rendering system
for Lively that is completely based on HTML. With this experiment we want
to find out whether Web browsers are able to display interactive and graphical
objects required by Lively Kernel2. We assume that HTML rendering is more
1 Scalable vector graphics (SVG) is an XML-based description language for two dimen-

sional graphical objects
2 First with HTML version 5 and CSS version 3 Web browsers are able to display

complex graphical objects like polygons and apply custom transformations without
relying on SVG. Lively Kernel requires these capabilities for its user interface.

2 Jaeger, Krahn

optimized in Web browsers. Especially when displaying textual content we think
that HTML rendering can provide better performance since Lively currently
implements a manual text rendering process.

In addition to better performance for text content, an HTML scene graph
can bring more significant benefits.

Compatibility The usage of HTML promises higher compatibility between
Web browser, as HTML is more standardized and accepted in browsers than
extensions like SVG. There is also a chance that Lively will run on the
Internet Explorer.

HTML Integration Lively can integrate HTML elements residing in a sur-
rounding HTML document, by livelifying the HTML element and inserting
it into its scene graph.

We first present an overview on Lively’s rendering model in section 2. We
introduce our approach for integrating HTML rendering into Lively Kernel in
section 3. In section 4 we describe how morphs are mapped to HTML elements.
Section 5 evaluates the performance of the implementation. In 6 we introduce
related work to HTML rendering in Lively. The last section concludes this report
and provides ideas for future work.

2 Lively’s Rendering Subsystem

The Lively Kernel has a modular rendering subsystem, which allows to replace
facets of the graphical subsystem with moderate effort. Figure 1 provides a rough
overview of the subsystem with its components.

origin
rotation
scalePoint
...

moveBy
rotateBy
setFill
...

Morph
position
extent
fill
borderWidth
borderColor
...

Shape

shape
1

TextMorph WindowMorph

...

Rectangle Ellipse Polygon

...

Fig. 1: The rendering system in Lively Kernel uses the bridge pattern to separate the
Morphic interface from its implementation.

The structure of the rendering subsystem follows the bridge pattern [5] which
separates the Morphic interface from its concrete shape implementation. Morphic

Lively HTML 3

provides a variety of abstract graphical objects which are called morphs. The
concrete rendering is performed with the help of a graphical primitive called
shape. A morph does not need to have a concrete graphical representation. Two
morphs of the same type can have different shapes. However, a morph and a shape
always have a one-to-one relationship. The appearance of a shape is controlled
by visual properties provided by the owning morph.

3 Concept

We have emphasized the modularity of Lively’s rendering subsystem. Essentially,
the separation of abstract morphs from their concrete graphical representation
allows the switching to HTML rendering by only replacing the rendering specific
shapes. In this section, we first show how this can be achieved in general and
then show our approaches for a selection of core problems.

3.1 Replacing the Rendering Subsystem

The bridge pattern in the rendering subsystem narrows the needed reimplementa-
tion in Lively down to shapes and their supporting objects. Ideally, the Morphic
interface and all code depending on morphs will remain untouched. This means,
that only a minor part of the Lively Kernel needs to be changed.

A mechanism that allows us to replace the rendering subsystem while we still
use the Lively Kernel for development of the same is context oriented program-
ming (COP). The details of this approach are described in section 4.

3.2 Core Issues for Implementing a Rendering Subsystem

The implementation of the HTML-based rendering requires various system
changes. We identified five issues and discuss how they are addressed.

HTML representation of existing graphical objects and their proper-
ties Lively uses an SVG scene graph, which is not intended for adding HTML
elements. An HTML scene graph better fits this requirement and therefore should
replace its SVG counterpart. SVG shape elements can be simply translated into
HTML shape elements. Unfortunately, even a part of the Morphic implemen-
tation influences elements in the SVG scene graph. Thus, we should keep the
structure of the HTML and SVG scene graph similar, so that changes in the
Morphic code stays at a minimum.

Transformations A transformation consists of three components, which are
scaling, rotation and translation. Lively stores a transformation in two forms: as a
combined transformation matrix and as separate attributes. The matrix simplifies
graphical operations, whereas attributes allow fast access to the components of
a transformation. Each Morph has its own transformation, which is relative to
the transformation of its parent morph. We should encourage the same ideas for
our HTML specific shapes.

4 Jaeger, Krahn

Serialization The current serialization of the Lively Kernel is based on the SVG
DOM. However, the basic principle of serialization should be similar for HTML.
Possible incompatibilities have to be found in advance. The only important thing
is that all properties are serialized, so that a serialized Lively world can be
completely restored.

Text Text rendering will directly use the DOM tree for its representation, rather
than shapes. The layouting of the text is handled by Lively. By following this
approach, we can use a major part of the existing SVG text rendering mechanisms.

Event System The event dispatching mechanism of Lively uses the Morphic
hierarchy. The only point the dispatching interferes with interferes with the
shape logic is the mapping of point in the world to the underlying shape. So the
dispatching asks a shape for containment of a given point.

4 Implementation

We have identified five major problems for the implementation of HTML rendering.
The mechanisms for the event system, text rendering and serialization are similar
to the SVG implementation. In the first part of this section we will have a closer
look at the problem of HTML representation of graphical objects. The second
part covers the use of context oriented programming during our implementation
phase. At the end, we show how native HTML widgets are integrated into Lively

4.1 Mapping of Morphs into an HTML DOM Tree

Figure 2 shows how a rectangular morph is rendered in Lively HTML. The graph-
ical appearance of the morph seen by the user is shown at the top. The morph
instance and its shape provide the interface for programmatically changing graph-
ical attributes like the extent or color. They are shown below. The shape object
is responsible for mapping those attributes to DOM elements. The generated
subtree of the DOM is shown at the bottom.

For introducing a new rendering system the shape implementation needs to
be changed because it is directly responsible for creating the graphical represen-
tation. In the following, we therefore describe how the shape implementation was
modified to allow HTML-based rendering.

A shape renders itself to the DOM tree by creating an element appropriate
for its shape. The relation between a shape object and its element in the DOM
can be seen in table 1.

A shape object basically translates to two distinct HTML elements. divs are
used for simple shapes, whereas canvas [2] elements are used for complex shapes
like polygons or polylines.

When the shape element has been created by the shape object it is subse-
quently wrapped into a div element representing the morph. It is important to

Lively HTML 5

:Morph
origin=pt(10,5)
rotation=0
scalePoint=pt(1,1)

position=pt(0,0)
extent=pt(50,40)
fill=Color.rgb(223,223,223)
borderWidth=1
borderColor=Color.rgb(0,0,0)

:Rectangle

shape

Morph appearance in Lively

Morph and shape

DOM

Fig. 2: This figure shows how a Morph with a Rectangle shape is displayed in Lively
Kernel, represented programmatically in Lively, and rendered using the HTML DOM.

notice that the morph object does not render itself into the DOM tree3. Rendering
is the responsibility of the shape.

The visual properties of a shape are added to the shape element by assigning
a CSS declaration to their style attribute. In case of canvas elements, properties
like color are set using the Canvas API. Table 2 shows the mapping of visual
properties to CSS attributes.

Transformations are set with the transform [1] property. It is a new property
of CSS3 and its value is very similar to the transformation value of SVG elements.
Therefore, many code involving transformations can be used from the existing
implementation.

Extent and the relative position of a shape in the morph are translated to
CSS’s standard positioning and extent attributes. For ellipses, we use rounded
corners described with the border-radius CSS3 attribute value.

Color properties are assigned to the corresponding foreground and background

attributes. A color can be of multiple types in the Lively Kernel. It can be a
3 Several specialized morphs, however, directly interact with the DOM. This breaks the

abstraction created by the bridge pattern and needs to be considered when modifying
the DOM representation

6 Jaeger, Krahn

Table 1: Mapping of shape types to HTML elements
Shape Type
(lively:type)

HTML
element

Remarks

rectangle div

ellipse div Use CSS3 border-radius property for
round shape

polygon canvas Set all display properties via JavaScript
polyline canvas Set all display properties via JavaScript

Table 2: Visual properties are mapped to CSS attributes.
visual property CSS attribute CSS3
origin, rotation, scaling transform yes
extent width, height no
pivot point 4 top, left no
fill color and opacity background partly
stroke color and opacity foreground partly
border color, opacity, radius, and width border partly
vertices 5 canvas.beginPath no

simple color consisting of a red, green and blue value or it can be a gradient.
Gradients are currently only supported for WebKit-based Web browsers, which
support the webkit-gradient CSS attribute. Anyway, this can be extended to
also support other Web browsers.

Vertices cannot be mapped to HTML div elements. Vertices have to be set
using the canvas API introduced in HTML5.

4.2 Using ContextJS

We want to use the Lively Kernel while we are changing the rendering subsystem.
Since the rendering subsystem is essential for a Lively world to render, an iterative
development approach in not feasible. Additionally, we want to allow displaying
an HTML and SVG world on the same Web document simultaneously. We were
then able to modify the HTML world using running in the SVG world.

A solution that fulfills both requirements is context oriented programming.
With this, we can execute rendering specific code either in an HTML context
or an SVG context. As long as the HTML rendering subsystem is not finished,
the Lively Kernel is executed in an SVG context, whereas all testing for the
new HTML rendering subsystem is done in an HTML context. Once the HTML
rendering subsystem is completed, the context can be assigned individually on
world creation.

Context-specific Code We have identified the shape classes and their support-
ing objects as the primary point requiring reimplementation in order to support

Lively HTML 7

HTML rendering. The Morphic interface, with some exceptions, does not need
to be changed. As a result, we only need to make the shape code context-aware.
This can be seen in figure 3.

Morphic API DOM representation
Shapes

(rendering-specific
code)

HTML Layer

asynchronous
events

Fig. 3: Locations for layered code and the different types of layer activation

With context oriented programming, there will be one shape implementation
for HTML and another one for SVG. In the figure, the HTML context is used
by activating the HTML layer.

Layer Activation and Context Propagation In order to execute the shape
code within a specific context, the corresponding layer first has to be activated.
A layer can be activated in the ways listed below and as shown in figure 3.
Object Scope The layer can be activated programmatically by explicitly calling

setWithLayers on an object. If this object initiates the execution of code
involving the layered code, this code is executed under the layer’s context.

Asynchronous Events Layer activation is lost whenever code is called asyn-
chronously. Reasons for such asynchronous code executions are system events
or scheduling. In order to avoid execution of shape code without a context,
we have ensured that the same layer is activated in the asynchronous call,
which was activated at the initiation of an asynchronous call.

User Events These events are similar to the asynchronous code above and are
initiated by user interaction like mouse moves or keyboard usage. Here it also
has to be ensured that the activated layer is propagated across user event
callbacks.

4.3 Widgets based on HTML form and text elements
HTML provides form and text elements specialized for certain tasks. Input ele-
ments, for instance, cannot only appear as text inputs but can also be rendered

8 Jaeger, Krahn

as sliders, search panels, or buttons. These widgets are rendered like native oper-
ating system widgets, allowing application developers to create a more familiar
look-and-feel.

To really benefit from HTML-based rendering, Lively users should be able to
use these widgets as normal morphs. We implemented morphs providing access
to widget attributes for some of these widgets. Figure 4 shows the widget set
currently supported by Lively HTML. In figure 5 a system browser that uses
these new morphs can be seen. The browser provides a better usability than
existing Lively tools when a lot of data, for example a big class like TextMorph,
is viewed.

The current implementation of the HTML widgets can be considered proto-
typical since the morphs directly interact with the DOM elements. This scheme
breaks the abstraction of the bridge pattern and shape elements should be used
to wrap those elements instead.

Fig. 4: HTML widgets.

5 Evaluation

We measured the performance of our implementation by running four different
benchmarks6. Each benchmark was run with the HTML version (both with
ContextJS deactivated and activated) and with the SVG version.

Ellipse Benchmark This benchmark creates moving and spinning ellipses to
measure the performance of transformations. We record the frames per second
during a fixed interval.

Mouse click and mouse move benchmark Measures how fast mouse events
are dispatched. This simulates typical user inputs. Measurements were done
at a milliseconds scale.

List selection benchmark We compare how fast list elements can be selected.
The list element in the HTML version is a new list morph that uses only
one shape being able to manage a list of text items. In the SVG version the
list morph uses scroll morphs, clip morphs, and textmorphs for that task.

6 Specification of the test system:
Macbook Pro, 2.16 GHz Core 2 Duo, 3 GB RAM
Google Chrome 5 (Mozilla5.0 (Macintosh; U; Intel Mac OS X 10_6_4; en-US)
AppleWebKit533.4 (KHTML, like Gecko) Chrome5.0.375.99 Safari533.4)

Lively HTML 9

Fig. 5: HTML browser.

This can be observed, for example, when interacting with lists having many
entries. Measurements were recorded in milliseconds.

Figure 6 shows the result of the benchmarks. The ellipse benchmark was
twice as fast in the SVG version than in HTML. This is unexpected and negates
the theory that HTML rendering is better optimized than SVG rendering. The
reason for that is probably the following: For modifying the CSS transformations
the transformation data has to be converted into a string representation. The
API for setting the CSS attributes without the need for string conversion is part
of the DOM Level 2 CSS specification7, however, in none of the browsers we
used for development was this interface implemented or working. SVG on the
other hand, directly uses matrices for transformation which is significantly faster.
The ellipse benchmark also shows the performance impact of ContextJS. When
activating the HTML rendering layer the system was 50 percent slower than
without it.

The mouse event benchmarks show that the HTML version is more than 25
percent faster than the HTML version. This is also not surprising since the event
dispatch mechanism that manually dispatches events using the morphic hierarchy
is mainly the same as in the SVG-based Lively. However, the events are first
captured by the canvas element that is in HTML Lively a HTML element. This
element seems to be able to process the events faster. The results indicate that
7 http://www.w3.org/TR/DOM-Level-2-Stylecss.html#CSSCSSStyleDeclaration

10 Jaeger, Krahn

Fig. 6: Results of the benchmark comparing the performance of the HTML and SVG
version.

replacing the existing manual event dispatch mechanism with the browser-based
event dispatch might be an effective optimization.

In the list selection benchmark the HTML version has a significant perfor-
mance advantage. Selecting list items is almost 10 times faster than in the SVG
version. Since we used a special HTML element that is able to scroll and directly
manages its list items it becomes apparent that having native elements is an
advantage compared to SVG where those elements are not existing.

Our evaluation results show, that we could improve performance for user
interaction and for elements that play an important role in the tooling of Lively.
We noticed a performance loss for transformations. Transformations are especially
important for displaying animated non-textual content and we conclude that
Lively HTML is not so well suited for these task than the SVG-based version.
However, support for transformations is still in development and no browser
seems to be fully specification compliant. We assume that this will change in the
future because there is a trend towards rich graphic Web applications.

6 Related Work

Several projects experimented with the rendering system of the Lively Kernel.
To create a standalone version of Lively that is independent of Web browsers,

the Gezira 2D graphic system was used for rendering [4]. This project was used
for gaining inside into a minimal graphical system and was not continued.

Based on the DOM emulation module implemented by the Gezira project
there also exists an implementation using the JavaFX scene graph for rendering
morphs[9]. This project was not continued.

The HTML5 canvas element was used to render an entire Lively world using
only raster graphics [6]. Also this project was not continued because the rendering

Lively HTML 11

performance of the canvas element turned out to be inferior compared with SVG
rendering.

The Qt framework was used as a rendering system for Lively [3]. It allows to
display morphs using Qt widgets. For running Lively Qt an installation of the
Qt platform or a browser plugin is necessary.

7 Conclusion

We have successfully created a prototypical version of HTML-based rendering
for the Lively Kernel. We showed that it is possible to implement all necessary
graphical operations and structures using CSS and HTML.

We evaluated our approach to determine the performance characteristics.
We found out that the HTML approach is much faster for text and list based
tools (i.e. for development tools) since we were able to use specialized HTML
elements. Thereby, the overall usability of the system is improved. The execution
of transformations, however, is slower and it can be expected that a HTML-
based system will not perform as well as the SVG version for Lively worlds with
animated graphical objects.

We used ContextJS to be able to work with Lively’s development tools and
change its underlaying rendering system at the same time. We were able to
mitigate the performance impact of ContextJS by merging layered code together
with the base layer to extend the existing system statically.

Although we have not implemented SVG-based shapes into the HTML version,
we consider that this is an option to still support vector graphics. This would
make sense for objects that can be better rendered in SVG as in HTML, for
example curves.

7.1 Future Work

We think it would be a valuable contribution to the Lively Kernel to integrate the
new rendering system. The overall gain of usability and the capability to better
support mobile devices like the iPad (because of the improved performance and
native widgets) compensates for the transformation performance loss. We also
expect that new Web browser versions will better support CSS transformations.
Steps towards an integration are the following: Create a converter that transforms
existing Lively SVG worlds into HTML documents, improve the text support for
native HTML text (rich text is not yet supported), and replace the old morphs
with the more performant native widgets.

We started experimenting with augmenting HTML documents. Loading Lively
Kernel on-demand into an existing document enables to embed morphs as well
as modify and script existing HTML elements. We think further experiments
with that approach can give valuable insights concerning document scripting and
end-user programming.

12 Jaeger, Krahn

References

1. CSS 2D Transforms Module Level 3. W3C Working Draft (2009), http://www.w3.
org/TR/css3-2d-transforms/

2. HTML5 - The canvas element. W3C Working Draft (2010), http://www.w3.org/
TR/html5/the-canvas-element.html

3. et. al, A.T.: Lively for Qt (2009), http://lively.cs.tut.fi/qt/
4. Alan Kay, e.a.: Steps toward the reinvention of programming. Tech. rep., Viewpoints

Research Instititute (2008)
5. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley (1995)
6. Ingalls, D.: Lively Canvas Implementation. Source Code (2009), http://www.

lively-kernel.org/repository/lively-wiki/lively/CanvasExpt.js
7. Maloney, J.H.: Morphic: The Self User Interface Framework. Sun Microsystems, Inc.

(1995), ftp://ftp.squeak.org/docs/Self-4.0-UI-Framework.pdf
8. Maloney, J.H., Smith, R.B.: Directness and Liveness in the Morphic User Interface

Construction Environment. In: UIST ’95: Proceedings of the 8th annual ACM sym-
posium on User interface and software technology. pp. 21–28. ACM, New York, NY,
USA (1995)

9. Palacz, K.: Lively FX (2008), http://lively-kernel.org/repository/
lively-kernel/trunk/source/fx/ and http://blogs.sun.com/roger/entry/
lively_fx

Lively Code Database
Seminar Web-based Development Environments

Tilman Giese and Marko Röder

Hasso-Plattner-Institut, Potsdam
{firstname.lastname}@student.hpi.uni-potsdam.de

Abstract. The Lively Kernel is a web-based development environment
that is increasingly gaining popularity. Its server-side persistency is cur-
rently based on Subversion. As a file-based revision control system, Subver-
sion does not allow for a more fine-granular revision control for JavaScript
modules, classes, or methods. This paper presents an alternative persis-
tency layer based on CouchDB that was integrated into the Lively Kernel
to allow developers to store JavaScript code objects in a database.

1 Motivation and Goals

With the increasing capabilities and performance of today’s web browsers web-
based development environments have become popular. The approach to develop
applications within the browser without any additional tool is very intriguing.
The Lively Kernel is such a development environment that encourages developers
to explore this new hands-on way of creating web applications.

The Lively Kernel is currently based on Subversion [1] as its persistency layer.
The Subversion repository is directly accessed by the browser to retrieve all nec-
essary files, in particular the XHTML and JavaScript files that contain the actual
code to be executed. As Subversion is a file-oriented versioning control system,
the versioning granularity in the Lively Kernel is also a file. However, using files
as the smallest entities to contain JavaScript code entails several shortcomings.
It also has a serious impact on how JavaScript code can be maintained by means
of the built-in Lively Kernel source code browsers.

The first and foremost shortcoming of this approach is that JavaScript source
code has to be parsed all the time in order to provide a fine-granular view
on classes within a module and methods within a class. Syntax errors in the
JavaScript file might render the entire file unparseable and thus no classes or
methods might be visible in a code browser. By just relying on the means of
JavaScript source code, it is also quite difficult to introduce metadata on classes
or methods (like documentation or method categories). The current approach
requires the developer to follow certain conventions, e.g. by declaring a class
property with a particular name or by adding a special comment on top of a
method definition.

And further issues arise from files being the entity of versioning control. Every
small change to a method will always result in the entire file being saved and

14 Giese, Röder

assigned a new Subversion revision number. This can eventually lead to a very
huge database. But more importantly, the connection between changes that logi-
cally belong together is lost as each change will create a new Subversion revision.
Without specific knowledge of how changes were done it is thus impossible to
revert back to a consistent state.

The goal of this project was to provide a more fine-granular revision control
for JavaScript code objects. A code object is a source code artifact within the
Lively Kernel environment that has a semantical notion of its own. A single code
object can be composed of other smaller code objects. Examples of such code
objects are methods, classes, and modules. The code objects should then be stored
in a separate database rather than the Subversion repository. The existing Lively
Kernel source code browsers should be extended to read and write code objects
without the developer noticing the change in persistency. An interface should be
provided to easily access code objects in the database. The JavaScript source
code should still be accessible as a file and modules should be loadable from the
database in the same way they were previously loaded. Figure 1 summarizes the
change in persistency.

Fig. 1: Persistency Change

2 Implementation

The following sections present our solution in more detail and explain how it
integrates into the Lively Kernel. The overall architecture is briefly described
followed by an overview of the three major parts of the solution: the Code
Database API to access the database, the Code Database Browser as the tool to
develop applications and the Lively Kernel core extension that allows developers
to load code from the database.

2.1 High-Level Architecture

As a preset requirement, CouchDB [2] had been chosen very early as the database
technology to store code objects. CouchDB and Subversion have a different notion
of revision, therefore the term needs clarification. A code object revision is a
particular persistent representation of a code object at a specific point in time.
Each code object revision corresponds to a particular CouchDB document. A code

Lively Code Database 15

object revision is identified by a code object revision number that is sequentially
incremented for each new revision starting with 1 for the first revision. The
revisions are collected in a code object revision history. Code object revisions can
be flagged as drafts meaning they are not visible to developers unless specifically
requested. Listing 2.1 shows the CouchDB document for a class revision. The
revision properties are self-explanatory. CouchDB documents are JavaScript
objects in JSON form.

{
"_id": "Revision : : 2 5 : : TestModule : : TestClass",
"_rev": "25−2a4bb26e8b88a5447215e71e942f6870",
"type": " c lass ",
"name": "TestClass",
"documentation": "This i s a c lass for test ing purposes",
" superc lass ": "Object",
"methods": [

"method1", "method2", "method3"
],
"module": "TestModule"

}

Listing 2.1: CouchDB Document: Class Revision

In order to group several code objects together, there is also the concept of
a change set. A set of changes to a set of code objects is called a change set
thereby change set implicitly defines a logical unit of work. Persisting a change
set in the database will create a change set revision. Similarly to a code object
revision history there is also a change set revision history that keeps track of all
the change sets. Listing 2.2 shows an extract of the CouchDB document that
represents the change set revision history. It stores who committed the change set
and which code objects were involved respectively what actions were performed
on these code objects.

{
"_id": "ChangeSetHistory",
"_rev": "200−c4a81c3b50ac4849e5595554a796e4fb",
" currentRevis ion ": 58,
" rev i s ionHistory ": [

...
{

" rev i s ion ": 36,
"author": "m. roeder",
"date": "2010−07−20T14:07:55Z",
"message": "my commit message",
" objects ": [

{
"name": "TestModule2",
" rev i s ion ": 1,
"action": "add"

},

16 Giese, Röder

{
"name": "TestModule2 : : TestClass",
" rev i s ion ": 1,
"action": "add"

},
{

"name": "TestModule1",
" rev i s ion ": 2,
"action": "update"

}
]

},
...

]
}

Listing 2.2: CouchDB Document: Change Set Revision History

In order to avoid name clashes when storing documents in CouchDB, there
are the following conventions for document identifiers:

- Revision::{RevNumber}::{ModuleName}[::{ClassName}[::{MethodName}]]
- RevisionHistory::{ModuleName}[::{ClassName}[::{MethodName}]]
- ChangeSetHistory

Listing 2.3: CouchDB Document Identifiers

2.2 Code Database API

The Code Database API is the interface to all code objects stored in the database.
It reflects the concepts described in the previous section. Figure 2 shows the
classes that are involved.

Fig. 2: Code Database API: Class Diagram

Lively Code Database 17

The main entry point is the class Repository. It provides methods to retrieve
code objects and to create a new change set:

to retrieve a single code object
getCodeObject(type?, name+, includeDrafts?)
e.g. getCodeObject(CDB.Module, 'TestModule ')
e.g. getCodeObject('TestModule ', ' TestClass ', true)

to list code objects
listCodeObjects(type, name+, includeDrafts?)
e.g. listCodeObject(CDB.Method, 'TestModule : : TestClass ')

to create a new change set
createChangeSet()

Listing 2.4: Repository Interface

A typical program flow is depicted in figure 3. First, a reference to the code
database repository is created along with a new change set. Afterwards, the
database can be queried for code objects using either the getCodeObject or
listCodeObjects method. Before a code object can be modified, it has to be
added to the change set. Saving the code object will persist all its properties in
the database using a draft revision. Code objects can, of course, be saved several
times until the change set is finally committed.

Fig. 3: Typical Program Flow

Draft revisions of code objects are snapshots that do not necessarily have to
be in an executable state or consistent with other code objects. Saving a draft
revision will create a new CouchDB document for the revision and modify (or
create if the object does not exist yet) the CouchDB document for the code
object revision history. Editing conflicts with other developers are detected upon

18 Giese, Röder

changing the revision history1. When the change set is committed, consistency
is checked more properly, for example a class also has to be part of the change
set if a method was added to it. After all consistency checks have successfully
passed, the draft flag is removed from the latest revisions of all code objects and
a new change set revision is created. Listing 2.5 shows a small example that adds
a new method to an existing class, saves and commits the changes.

var rep = new CDB.Repository();
var cs = rep.createChangeSet();

var klass = rep.getCodeObject(CDB.Klass, 'TestModule ', ' TestClass ');
var method = new CDB.Method('myNewMethod ');
klass.addMethod(method);

method.documentation = 'Put here what the method does ';
method.source = ' function () { . . . } ';

cs.add(klass);
cs.add(method);

klass.save(); // saves the changes as draft
method.save();

cs.commit(); // commits the changes

Listing 2.5: Example Program

Throughout the Code Database API error conditions are signaled using excep-
tions. For example, getCodeObject will throw an ObjectNotFoundException if
the specified code object is not in the database. commit can throw a Consistency
Exception if any of the consistency constraints are not met or, like all database
operations, a DatabaseException if there is technical problem with the database.

2.3 Code Database Browser

One implementation that uses the Code Database API is the Code Database
Browser. It is the tool that lets a developer browse and edit the Lively Kernel
source code stored inside a CouchDB database. By giving the user this kind of
tool, there is no need to directly interact with the database. Everything that
needs to be done – like adding or removing a code object (e.g. a method) and
setting its attributes or contents – can be done with the browser. Figure 4 shows
the Code Database Browser and names its parts.

To make use of the look and feel of the Lively Kernel browser-style, the Code
Database Browser was built on top of already existing classes that are used to
show the JavaScript files from the Subversion repository. Using this basic browser
1 Whenever a CouchDB document is updated the document revision hash (which is a

CouchDB identifier) of the previous revision has to be provided. If another revision
was added in the meantime, CouchDB can thus detect an update conflict.

Lively Code Database 19

Fig. 4: The Code Database Browser

there is not only a common look and feel but also the same understanding of how
to represent and work with each code object. Thus it will be easy to integrate
with the default code browser or even replace it in one of the next steps.

A specialty of the Code Database Browser is its differentiation between saving
and committing changes. Derived from the two ways code objects can be stored
– either as draft or as a commit when semantically grouped – there are also
two ways to persist changes. The first one is the default action which is carried
out e.g. after changing a method and pressing the keyboard shortcut to save
(depending on the operation system that could be CMD + S). This invokes the
save method on the affected code objects and stores them as drafts inside the
database. Having the draft status the changes have only been safely persisted
but they do not affect the currently loaded and executed code. If the developer
wants to activate the changes instead, then the commit button has to be pressed
and all the changes done inside the current change set will be committed and
activated. Since the developer might not always want to see the changes made
as drafts, the draft button switches the browser mode between only displaying
activated code and also displaying drafts.

Adding and removing a module, class or method which can be done by the
"Add module" button and the browser sub menus automatically creates a draft
for the corresponding code object.

2.4 Kernel Extension

In the last two sections we focused on how to manage code objects with the Code
Database API and the Code Database Browser. In this section we will explain
how the code that is stored inside CouchDB can be loaded into and executed
inside the Lively Kernel.

Listing 2.6 shows the structure of a module that can be loaded from the Sub-
version repository into the Lively Kernel system. The module parameter creates
a new module and namespace called lively.Example that has dependencies to

20 Giese, Röder

lively.Tools and lively.Helper. Inside that namespace, a class definition
creates the new class SubClass which is derived from SuperClass. The class
SubClass can have methods like initialize and aMethod and attributes like
documentation.

module(' l i v e l y . Example ').requires(' l i v e l y . Tools ', ' l i v e l y . Helper ').
toRun(function(example, tools, help) {

SuperClass.subclass(' l i v e l y . Example . SubClass ', {
documentation: ' This i s a subclass of SuperClass . ',

initialize: function($super) {
...

},

aMethod: function(arg1, arg2) {
...

},
...

});
...

});

Listing 2.6: Example for the module structure

Our goal was to extend the current core system to load source code from the
code database in the same manner. So we introduced a new prefix for all the
source code that is loaded from a database. This prefix starts with a $-sign which
is followed by the name of the database and a dot. So the prefixed module name
for the module of listing 2.6 would look like $code_db.lively.Example when
loaded from the code database. In this case code_db is the database name of a
CouchDB database containing Lively Kernel source code.

Furthermore the same style of references can be made inside requirements
and when subclassing. This allows a developer of the Lively Kernel to adapt to
the new persistency layer more easily.

What is done when the Loader of the Lively Kernel comes across one of the
new prefixed module references is that the request of loading the JavaScript file
from a URL is modified to not use the current Subversion repository but the
CouchDB instance that has been configured. On that CouchDB the selected
database is queried for a list (one of CouchDB’s querying techniques) that builds
a JavaScript file with the same kind of module structure used by the Lively
Kernel until today.

3 Discussion

The previous sections introduced the changes we made to the Lively Kernel to
make it use a CouchDB database as a (second) persistency layer. Now there shall
be a discussion on the decision to use CouchDB as a revision control system
(RCS) and the advantages and disadvantage we did discover working on it.

Lively Code Database 21

CouchDB itself is one of the new database technologies that arose within the
NoSQL movement. Its document-oriented style and the use of JavaScript to define
queries (based on the map/reduce algorithm) makes it far more appropriate to
store the source code of the Lively Kernel inside it than a relational database.
However, its simple key-document storage has also some disadvantages when
being used as RCS for object-oriented source code because nowadays every object-
oriented programming language has some kind of namespace concept. So the
Lively Kernel built upon JavaScript has that too: methods and attributes belong
to a class, classes belong to a module and modules have a path-like namespace
structure. To support that we had to come up with a mapping of this whole
structure to a single key (see section 2.1 for that).

Another important point which was already mentioned is how to manage
the revisions. At first we completely wanted to rely on what CouchDB calls a
document revision for our code objects. Doing this and storing a code object (e.g. a
method) inside only one CouchDB document should lead to code object revisions
stored as document revisions. What we did ignore following this approach was
that CouchDB revisions are not revisions as in RCSs. Old revisions could for
example be removed when compacting a database or omitted making a backup
copy to another CouchDB instance. This surely is unwanted when storing source
code where one day you might go back in time and restore an old version or
use multiple versions of the same file/library in different parts of the system
in parallel. So to get fully persistent revisions we ended up with a revisioning
system that stores a document for each revision of a code object which was one
of two possible ideas [3].

At last we needed a simple and efficient way to reconstruct JavaScript code
from the code objects stored inside the CouchDB. This is a point where CouchDB
again can show its advantages of document storage. Using map/reduce inside
a mixture of views and lists (two of the querying techniques) we were able to
construct JavaScript files for modules that look exactly the same as modules that
are stored as files inside the Subversion repository. As an alternative to using
map/reduce code to construct the JavaScript files, a template-based approach
that is also supported by CouchDB could have been taken. But as long as the
resulting structure of the JavaScript files is that simple creating a template would
just be more overhead. However, in both cases the resulting CouchDB lists can
easily be accessed by a URL which by now is the access paradigm for Subversion
files too. Therefore no deep changes inside the Lively Kernel had to be done to
execute source code that comes out of the CouchDB.

4 Related Work

Like other revision control systems such as ENVY/Developer [4], the Lively
Code Database provides the developer with a toolset that is implemented on the
core system to help with configuration management and version control. With
a similar type of structuring code objects – modules, class and methods – and
a browser to develop and maintain these objects the Code Database enables

22 Giese, Röder

changes on the method level. Unlike ENVY/Developer our approach does not
have component ownership but an author for each revsion.

In contrast to RCS like Subversion [1], GIT [5] or Mercurial [6], our Code
Database on top of a CouchDB database does not use files as the finest granularity
for source code but instead it breaks it down into modules, classes and methods.
All these parts are separatly versioned and kept together by an encapsulating
change set. So there are less conflicts if more than one developer is working on
the same part of the system.

We are working with revisions similarly to Perforce [7] in terms of letting
the server have a database with meta information on the versioned source code
(e.g. revision numbers and relations between different revisions) and storing the
source code as separate documents. Additionally we have change sets (that are
called change lists in Perforce) that group multiple changes on code objects and
name the action that is carried out (like added, deleted, updated). However,
we have a much finer grained look on code objects as we do not use files to store
the source code.

5 Summary and Outlook

With the work done so far, there are three libraries to enable CouchDB as one of
the persistency layers that the Lively Kernel can rely on. These three libraries are:
the Code Database API which is based on the simple JavaScript API to interact
with a CouchDB instance, the Code Database Browser which was created on top
of the Code Database API and the small library of core enhancements of the
Lively Kernel to make CouchDB databases a valid source to load and execute
source code from.

On the CouchDB side there is only one design document that contains all
the map/reduce functions to let the core extension and the Code Database
API query the database. And this document can easily be installed on a new
CouchDB database by simply pointing the Code Database API or the Code
Database Browser to the database URL and instructing it to "livelyfy" that
database.

To conclude by now there is a transparent replacement of the current persis-
tency from the perspective of the source code and revision management.

Nevertheless there are still some points missing that need further work. One
of it is that the entire Lively Kernel source code has to be imported into one
database. Doing this there also has to be done some clean up and extension work
since the current JavaScript code used inside the Lively Kernel does not only
consist of modules, classes and methods/attributes but of some plain JavaScript
code to create the base of the system (like the namespaces etc.). Furthermore
there are not only JavaScript files that make the Lively Kernel but also XHTML
files containing all the elements inside a "world". Either there has to be a way to
convert that XHTML files to CouchDB documents too or these files have to stay
inside a parallel Subversion repository.

Lively Code Database 23

As final ideas of what might be coming next, there still is some work to do
on transactions and a better conflict resolution when saving source code to the
code database. Also the previously discussed option to use different revisions of
the same module or class and the tagging of a revision as version might add a
great flexibility to the Lively Kernel.

References

1. Pilato, M.: Version Control With Subversion. O’Reilly & Associates, Inc., Sebastopol,
CA, USA (2004)

2. Anderson, J.C., Lehnardt, J., Slater, N.: CouchDB: The Definitive Guide Time to
Relax. O’Reilly Media, Inc. (2010)

3. Anderson, J.C.: Simple document versioning with couchdb. http://blog.couch.
io/post/632718824/simple-document-versioning-with-couchdb (2010)

4. Pelrine, J., Knight, A., Cho, A.: Mastering ENVY/Developer. Cambridge University
Press, Camebridge, United Kingdom (2001)

5. Loeliger, J.: Version Control with Git. O’Reilly Media, Inc., Sebastopol, CA, USA
(2009)

6. O’Sullivan, B.: Mercurial: The Definitive Guide. O’Reilly Media, Inc., Sebastopol,
CA, USA (2009)

7. Wingerd, L.: Practical Perforce. O’Reilly Media, Inc., Sebastopol, CA, USA (2006)

A Web-based GridBagLayout
Seminar Web-based Development Environments

Alexander Hold and Stefan Reichel

Hasso-Plattner-Institut, Potsdam
{firstname.lastname}@student.hpi.uni-potsdam.de

Abstract. Lively Kernel is one of the first web based development envi-
ronments, which makes the creation of powerful interactive web applica-
tions possible. One key challenge is the layouting of graphical elements,
which can now be freely dragged, moved and scaled. Our layout manager
solves this issue and allows it in effect to create complex arrangements
with windows, labels and editor boxes. In this paper a GridBagLayout
algorithm is described and the special challenges of a web based develop-
ment are discussed.

1 Motivation

Modern web based development environments like Lively Kernel provide several
tools to create complex graphical elements. These elements are called Morphs
in Lively and can be arranged to form complex structures like editor windows,
system class browsers etc. Of course you are able to resize and move such windows
and their contents, but this creates a new challenge. When the user resizes an
editor window for example, he expects, that its text box will also be resized
automatically. At the same time the position of the buttons should be altered
but the size should still be the same. This complex behavior is normally realized
by a layout manager.

Lively Kernel already contains two simple layout managers for horizontal and
vertical layouting. Those two layouts can be combined by putting a container
morph with the horizontal layout into another one with the vertical layout and
the other way arround. Nevertheless it would be difficult to align items inside the
main container in both directions. For example if the horizontal layout would be
used for the inner container it would be necessary to align the items vertically
manually. A layout manager is usefull, which can perform vertical and horizontal
layouting at the same time and allows the definition of fixed areas, which will
not be resized. In addition to that the manager should be configured in a lively
way, which means just by clicking and not by editing large portions of source
code. These challenges are covered by the developed GridBagLayout manager.

The remainder of the paper is structured as follows. First of all the layout
manager concept is presented, which is followed by the related work. In the second
part special concepts and challenges of the layout implementation are discussed.
Afterwards the usage of the new layout is shown and finally a conclusion is drawn.

26 Hold, Reichel

2 The concept

2.1 The layout manager concept

Currently there exist various concepts for layouting, one of the most famous is
the GridLayout. The basic idea behind the concept is the division of the container
element into equal cells. Every cell gets its own row and column number assigned.
To add an element to the container it has to be put into one of those cells. The
element will cover the whole space of the cell, which means it has to be extended
or shrinked to fit. Often the resulting size is too small for the element e.g. for a
text box, therefore it can be spanned over several cells. When the container is
resized every cell will be altered, which in result will also effect the elements in
the cells. One major disadvantage of this approach is the equal size of every cell
because this makes it very inflexible.

This behavior is changed in the GridBagLayout concept, which allows variable
heights (for rows) and widths (for columns). Columns and rows can be set to a
specific size which will not change when resizing the container. They can also be
set to be resizable, which means that its size may change when the container is
scaled. By default all resizable rows or columns have the same size, which can
be zero if the containers size equals the size of all fixed rows/colums. If all rows
or columns have a fixed size, a new resizing row or column will be added to fill
the remaining space (which may be zero).

2.2 Related work

The GridBag layout was not invented by computer scientists and despite the
several user interaction challenges it is quiet easy to understand in principle. In
effect there exist not much related theoretic work in the software industry. The
background of the grid layout idea is much older than computers itself. The
problem of arranging huge amount of information in form of text and images
raised in the printing industry. That is why most of the theoretical work such as
the book Making and Breaking the Grid [5] has such a background. Nevertheless
those ideas were also adopted in the computer industry and resulted in various
different implementations such as Ext JS[1], Nokia QT[3] [4] and Java[2].

Almost every bigger framework that contains graphics has some kind of grid
layout. For example in Ext JS[1], a large graphic framework for JavaScript, you
can add the table to almost every panel. This table layout works much like the
GridLayout. In this layout you do not specify where a panel should be placed
to. The position is calculated by the column and row spanning of the panels and
their order in which they are added to the layout’s panel. This layout is pretty
useful, but one thing is missing: you cannot edit your layout by using a graphical
UI.

In the QT framework[3] [4] , the most used graphics framework for C++,
many designers use the "QGridLayout" for layouting their windows and dialogs.
The QT designer tool often uses the grid as default layout when you add Widgets
into another Widget. This tool was used as blueprint for many of the usability

A Web-based GridBagLayout 27

questions in the Lively GridBagLayout. It always tries to resize dropped Widgets
to fit into the layout. That is useful for filling windows completely instead of
having empty parts. The new layout for Lively tries to avoid resizing the morphs
after dropping, because the user may not like to have his predesigned morphs to
be resized automatically. Other parts like the way to handle dropping onto an
occupied cell works more like in the QT designer.

Fig. 1: Dropping a Widget between two others in the QT designer.

In the QT designer the user can drag items from the menu or already existing
items into the layout. He can see a graphical effect when dragging, which shows
where the Widget will be placed to. When marking the layout object or its parent,
the user can set preferences for it in a separate part of the UI. Margins to the
borders can be set, spacings between the cell and minimum sizes for the rows
and columns. In addition to that a stretching factor can be added for single rows
and columns, to modify how their size changes if the layout’s size is changed.
The Widgets itself can have a minimum and maximum size, too. Size constraint
values can be set to define how the layout should react if it is resized.

The designer creates a XML file from the settings you make. The User Interface
Compiler uses this file to create corresponding C++ header or source files. You
do not need to use the QT designer to create windows or dialogs. The designer is
just a tool to simplify the UI creation. Once the header or source files are created,
they can be used in the C++ project.

Every setting which could be changed in the designer can also be changed at
runtime. For example Widgets can be added, margins, spacings or the Geometry
of the layout can be set. The layout provides information about the current
settings like the position of a specific cell, the count of rows or the minimum
width of a column.

The GridBagLayout concept is also implemented in Java [2] and provides
similar methods. The key of the this approach is the so called “GridConstaint”,
which must be supplied whenever a new item is added. This constraint object
contains information about the current cell position, spanning, padding and also
its margins. It also determines the behavior if the added element is smaller than

28 Hold, Reichel

the corresponding cell e.g. after resizing of its container. In that case it can be
specified whether the element should be stretched horizontally, vertically or both.
If the element is not resized in both directions the developer can align the element
for example to the bottom or top. Those “GridConstraints” can be altered at
runtime to provide maximal flexibility.

GridBagConstraints c = new GridBagConstraints();
c.fill = GridBagConstraints.HORIZONTAL;
c.gridx = 0;
c.gridy = 0;

JButton button = new JButton("Button 1");
container.add(button, c);

Listing 3.1: Adding a new button to a container with GridBagLayout

Listing 3.1 shows how a button is added to a container element which uses the
GridBagLayout. The button will be added to the first column(“gridx”) and first
row(“gridy”). If the container is resized the button will only be scaled horizontally.

3 The layout manager implementation

3.1 The dropping concept

A main purpose was to implement a grid layout that can be build easily by using
drag and drop. For this we used the functionality of lively which already detects
where the dragged morph was dropped. All inserted morphs start with a column
and row spanning of one. If a morph is inserted at an empty row or column, this
one is set to the morphs size and set to fixed. The size of a row or column is
increased to the size of a new morph, if it is larger than the row’s or column’s
size before the drop.

Fig. 2: If the row and column are empty they use the morphs size after dropping.

A Web-based GridBagLayout 29

If a morph was dropped onto the container morph, a function is called which
determines to which cell the morph should be added to. As dropping point the
center of the dropped morph is used. The algorithm begins by retrieving the cell
to which the point belongs to. If this cell is empty, the morph can be added here.
Otherwise the morph will be added to a new row or column.

Fig. 3: Dropping a Morph onto an occupied cell creates new cells.

Fig. 4: The morph is inserted into the column where it was dropped in.

The dropping point’s distance to the four borders of the occupied cell’s morph
(target morph) are compared. The distanced are normalized by height/width of
the target morph which is necessary if it has a big difference between its height
and width. Next to the nearest border a new row/column is inserted, in which

30 Hold, Reichel

the morph will be placed. A dropped morph will always be placed in the same
row (column) as dropped, if the nearest border is the left or right (top or bottom)
one.

3.2 User interaction for grid resizing

The user can toggle to show or hide the borders of all rows and columns (Grid-
Lines). These GridLines protrude from the container. This part of the line can
be used to resize a row or column by dragging. Dragging a line between two
resizable rows will not change anything. Changing the position of an outer line
may change the containers size, but not to a width (height) less than the total
size of all fixed columns (rows).

When displaying the GridLines, additional buttons are shown at the sides for
every row and column. Red buttons mean that this row or column has a fixed
size and green buttons are next to resizing rows and columns. Pushing one of
these buttons toggles the corresponding row or column resizing policy (fixed /
flexible).

At the top or left of a GridLine a plus sign is shown. Clicking that sign adds
a resizing row or column at this position.

3.3 Spanning of Morphs

A morph can span multiple rows and columns at once. The user can drag the
GridLine to the right or bottom of a morph to change this spanning. The morph
will use the complete area of all rows and columns it lays in. Increasing the
spanning is prohibited, if the new spanning includes an already occupied cell. If
a new row or column is inserted in the middle of a morph, the morph’s spanning
will increase.

Fig. 5: Changing the spanning of a morph.

A Web-based GridBagLayout 31

The implementation of spanning allows the user more flexible designs. A
morph can now be in a flexible and a fixed row at once, which guarantees a
minimum height. The design in figure 6 would not be possible without spanning.

Fig. 6: This would not be possible without spanning.

3.4 Context based menus

The user interaction is mainly done via GridLines, but also other interaction
mechanism were needed. A well known concept is the usage of context menus.
This makes it possible to perform a right click on a morph and to select an option
to hide the grid or to remove the selected column. Every morph has already a
predefined context menu, which is inherited from the world morph. Nevertheless
for our purpose it has to be altered. The easiest way to do this, is to overwrite
the “morphMenu” method, which is used to create the menu . This idea has a
major disadvantage, the inherited world morph context menu and its items are
lost, so they wont be shown when right clicking on the altered morph. A real
solution should combine the new items, for example “Remove column”, and the
old items inherited from the world morph.

This is done by context based programming in Javascript, in Lively it is called
ContextJS. At first a so called “layer” has to be created. In this layer the class of
the object, which should be altered is specified. In the above mentioned use case
this is the Morph class itself. In a second step the methods of the class can be
overwritten. In comparison to the first approach, this time ContextJS provides
a reference to the original implementation. In effect the old implementation can
be called and afterwards user defined additional code. To alter the context menu
the old morphMenu method is called, this will create a menu with all world
morph items. Afterwards additional items like “Remove column” are added to
the resulting menu, as shown in listing 3.2.

layerClass(GridBagLayer, Morph, {

morphMenu: function ($proceed, evt) {
var menu = $proceed(evt);
menu.addItem(["Remove column", this.removeCol]);

32 Hold, Reichel

return menu;
},

};

Listing 3.2: Altering morph menus with ContextJS

The layer and its effects are by default turned off. To activate it for example
after the Morph was added to a container with a GridBagLayout manager, the
Morph has to be just informed, that the layer is active by calling its “setWith-
Layers” method. This new context is not only active for the Morph itself but
also for any of its children. An extract of the code which was used to perform
this task can be found in listing 3.3.

beforeAddMorph: function (supermorph, morph, isFront) {
....

morph.setWithLayers([GridBagLayer]);
}

Listing 3.3: Activating the ContextJS layer

3.5 Saving a layout

In comparison to normal interactive web sites, the Lively development envi-
ronment has special challenges to master. One of them is saving of content.
Interactive web sites also tend to save information like data entered in a web
form. Nevertheless within the scope of web based IDEs this challenge gets a
new quality. It is not only necessary to save simple text, but also complex data
structures, in Lively a lot of those structures exist.

Saving itself is not the easiest task to perform. Nevertheless the perhaps most
complex task is the loading and recovering of the saved data back to working
JavaScript code.

For the first part of the saving challenge, Lively Kernel uses the JavaScript
Object Notation1 technology. JSON is a very lightweight data interchange format,
which was developed with the goal to create an easy to save and machine readable
format. This data representation is itself valid JavaScript code, which can be
executed by calling the JavaScript method "eval". Today various implementations
for common used programming languages exist, one of them is JavaScript. By
using JSON and its ability to save data structures like lists and dictionaries.

In that way Lively is able to save for example parts of the ContextJS layers and
later on to unserialize and in effect to recover them. Every Object can implement
a method called “toLiteral” which controls the serialization and method “from-
Literal” for the unserialization. This works for Layers out of the box, nevertheless
for the developed layout manager, those methods had to be overwritten.

One of the main concepts of the layout implementation is to store adminstra-
tion data mainly in the manager and not in its controlled Morphs. Therefore
saving and recovering of the layout manager is essential, this is done in two
1 http://www.json.org/

A Web-based GridBagLayout 33

steps. At first the general column and row data are stored, these are mainly sizes
and constrains. The saving and recovering are done with the above mentioned
"toLiteral" and "fromLiteral" methods.
"rows":" [{\" s i ze \":30 ,\" f ixed \": true ,\" baseSize \":0 ,\"notEmpty\": true

} ,{\"width\":0 ,\" f ixed \": fa l se ,\" baseSize \":0 ,\" s i ze \":120}]"
Listing 3.4: JSON representation of the saved row information of the GridBagLayout

The second step is performed after the basic layout manager and its Morphs
have been restored. At this time the manager knows the size and some additional
information of the cells, but not which (container-) Morph is assigned to it. This
relation is recreated by asking the container Morph for its children, which will be
assigned to a column and row. The crucial point of the method is the container
itself, which is not available after the first step. Normally a layout manager in
Lively does by design not know its container, this information is later supplied
by special user triggered events, for example when a new child morph was added.
Those events are also used by the developed GridBagLayout so in effect the user
will have a working layout at every time.

4 Using the layout

For using the GridBagLayoutManager it is need to include the module Grid-
BagLayout. To add the layout to a morph use the following line (aMorph is the
the morph you want apply the layout to):
aMorph.layoutManager = new GridBagLayoutManager(aMorph);

By default the helping morphs and lines described in section 3.2 are visible, but
can be hidden by using the point “Hide grid” of the morph’s menu.

The GridBagLayoutManager is designed for creating and editing a layout in
the UI of Lively. How to use the UI functionality is described in the sections
3.1 to 3.4. Nevertheless it is possible to create a design automatically by using
JavaScript. Every needed method is directly invoked in the layout manager, a
list of all methods for creating and editing a grid is shown in the tables 1 to 3.

The layout manager API can be divided into three main parts. First of all
there are methods to assign a morph to a cell and to change its spanning.

Table 1: Methods for a morph of the grid layout manager
moveMorphToCell(aMorph, x, y) Moves a Morph to the specified cell if it exists

and is not empty.
setRowSpanForMorph(aMorph, span) Sets a Morph’s row spanning.
setColSpanForMorph(aMorph, span) Sets a Morph’s column spanning.

The second part of the API is represented by several getters, which help the
developer to get a morph based on its position in the grid. If no morph is present
at the supplied position the undefined value will be returned.

34 Hold, Reichel

Table 2: Methods to obtain a Morph
getMorphAt(x, y) Return the Morph contained in this cell.
getMorphsInColumn(index) Returns the Morphs of this column.
getMorphsInRow(index) Returns the Morphs of this row.

The last part of the programming interface is used to control the size and
resizing mode of cells. If a row or column is set to a fixed mode it won’t be resized,
instead it will keep its size. The following API can also be used to add new rows
and columns. By adding rows and columns with a small width or height and a
fixed size policy it is possible to create padding between cells.

Table 3: Methods for row and column access
addRowAt(index) Adds a row at the specified index.
addColAt(index) Adds a column at the specified index.
removeRow(index) Removes a row if it is empty.
removeCol(index) Removes a column if it is empty.
setRowFixed(index, value) Sets a row to fixed as default or to resizing if

value is false.
setColFixed(index, value) Sets a column to fixed as default or to resizing

if value is false.
toggleRowFixed(index) Toggles a row between resizable and fixed.
toggleColFixed(index) Toggles a row between resizable and fixed.
setRowSize(index, size) Sets a row to a fixed size.
setColSize(index, size) Sets a column to a fixed size.

5 Conclusion

Developing for and in a web based environment creates a lot of challenges. One
of them is now solved. The GridBagLayout of Lively Kernel provides the user
the ability to create complex arrangements of morphs, which can together act as
one. Whether they are scaled or moved, whether they are put in horizontal or
vertical order, the layout will always guarantee a proper position and size. At the
same time the administration of such a complex piece of software is kept simple
and can be controlled by a few lines of code. In addition to that a user interface
was created lively, which means to change cell size, mode and control morphs
with just a click.

Although the developed layout manager is for most of the users an invisible
component in the background, it enriches their Lively Kernel experience every
day.

40 Garagnon, Schlichting

3 Architecture

This chapter describes the architecture of the collaboration framework for the
Lively kernel in detail. Figure 2 shows the overall architecture: A Lively ap-
plication is embedded in the web environment and is therefore a client server
architecture. On the client side, a Command Manager executes or undoes com-
mands and queues new commands in the Local Command Queue. When the
client creates a new command, it is serialized and send to the server as explained
in section 2. On the server side, a web server is listening for new client connections
and commands at which the latter are stored in the Global Command Queue.

Browser

Global Command
Queue

Lively Kernel

Command Manager Collaboration Server

Server

Local Command
Queue

Fig. 2: High-level architecture of collaboration framework

Next subsections will explain the client and server architecture in more detail
(see figure 3).

3.1 Client Architecture

The client intercepts some core Lively morph methods with ContextJS to record
the user’s (visual) changes (see table 1). These methods are grouped into three
ContextJS layers, which can be separately switched on and off. Since some func-
tionality (especially the onMouseMove) can produce much synchronization over-
load, this might be helpful in situations with slow internet connection.. The
Command Manager queues the commands and sends them via the Connection
singleton instance to the server.

The Connection singleton holds a persistent connection to the server which
is established as soon as a client opens a collaboration-enabled Lively page. This
connection is realized through the emerging WebSocket [3] technology, which
allows bidirectional communication with a smaller footprint. Thus, pushing mes-
sages (in our case primarily commands) from server to clients and the other way
round is easily possible without much overhead - it’s much like using sockets in
desktop programming.

Collaboration 41

Table 1: Overview of intercepted Lively methods

Layer Class Method
CollabMorphLayer Morph rotateBy

translateBy
setPosition
...

CollabMouseMove Morph onMouseMove
CollabTextMorphLayer TextMorph setTextString

Browser

Node.js

Key-Value
Storage

Morph ● ● ●
Text

Morph

ContextJS

WebSocket

Lively Kernel

Command Manager

Connection

Redis Client

Collaboration Server

Server

Redis Server

Fig. 3: Detailed client and server architecture of collaboration framework

3.2 Server Architecture

The architecture of the server is shown on the right side of figure 3. The server is
split into two main parts, the Collaboration Server acting as the web server
and the Redis Server representing the database. The Collaboration Server
is written in Node.js3, an event-driven I/O framework that enables writing server-
side JavaScript. Redis4 is an in-memory key-value store that allows advanced
data types as values (e.g. strings, lists, sets, ...) and can persist its data to the
disk in configurable intervals. It perfectly fits in the collaboration use case since
it provides fast access to the data while being semi-persistent so that most of the
data can be restored when the server crashes.

The Collaboration Server accepts WebSocket connections and commands
from clients. Every command is saved into the Redis database to enable the
playback of commands and inform new clients about the stored commands. Table
3 http://nodejs.org/
4 http://code.google.com/p/Redis/

42 Garagnon, Schlichting

2 gives an example snapshot of the Redis database to show which data is stored.
Every key is scoped to the user’s page URL so that commands of different pages
aren’t merged.

The Collaboration Server uses the publish/ subscribe mechanism (based
on channels) of Redis to send new commands to every client. Three channels are
exposed by the Collaboration Server: commands, milestones and mouse. All
channels, except for the mouse cursor, are saved semi-persistent into the Redis
key-value store. Mouse cursor events are directly propagated to all clients since
they are only of interest in a short time slice. Thus, the Server subscribes to the
command channel in Redis with a callback, which is called every time the server
publishes a new command from a client. This callback function sends then the
published command to every client.

Table 2: Exemplary snapshot of Redis key-value database

Key Example Value
<url>//milestones ["140", "234"]
<url>//commands-current-id "336"
<url>//commands [{

id:336",
commandType:"SetPositionCommand",
morphId:"user_0366079:Morph",
val:{x:10, y:10},
oldVal:{x:5, y:5},
timestamp:"1280353890466",
userId:"user_0"

}]
<url>//users ["user_1", "user_2"]

4 Implementation Considerations

4.1 Globally unique IDs

When a user updates a morph on his page, the changes have to be sent to the
accordant morph on the other users’ pages. Therefore, globally unique IDs are as-
signed to all new morphs so that a morph can be unambiguously identified on each
page. We extended the ID generation in Lively to avoid conflicts (i.e. same ID gen-
erated on different clients for different morphs) by scoping all IDs to the current
user: Instead of generating IDs like 1234:Morph, lively.data.Wrapper#setId
add the user ID resulting in user541234:Morph5.
5 a colon as separator couldn’t be used here since some existing code relied on the class

name after the first colon

Collaboration 43

4.2 Object (de)serialization

As described in section 3.1, we are intercepting relevant morph methods to listen
to changes. Arguments are saved in command objects that have to be serialized
when sending to the server. Especially when it comes to serializing whole morphs,
i.e. for Morph#addMorph synchronization, a smarter serialization approach is
necessary to handle circular references and already existing objects. [2] provides
a Relaxer and Restorer class for (de)serialize Lively morphs that could be easily
adopted for our use case: When adding a new morph (which might contain sub
morphs, for example), all references to other morphs are only saved by their IDs
so that a quite flat JSON structure is generated. Other clients can then deserialize
this structure and restore all previous relationships.

4.3 WebSockets

Websockets are a fully bidirectional and slim protocol from the upcoming HTML5
standard. The decision for Websockets as the protocol between the client and
the server was taken, because of the need for nearly realtime bidirectional com-
munication. There is a japanese website6 on which everyone can test the speed
difference between Websockets and XML HTTP requests (Ajax). With the latest
Google Chrome browser the benchmark of the website shows that WebSockets are
nearly 40 times faster than the Ajax requests.

5 Summary & Outlook

Some special events are intercepted by the use of ContextJS. These events are
transformed into a command and send through WebSockets to the server, which
saves the commands in the key/value store Redis. Via this mechanism nearly
every Wiki page can be made collaborative.

At this stage of the project users can collaboratively work on a wikipage and
add new morphs or drag them around, or even complex actions like adding new
journal entries. All these actions are synchronized between the server and all
users. Each user can even see the mouse cursors of the other users.

General Outlook In the future there will be a client side time slider, which enables
each user to travel back in time, via undoing the saved commands. The user
name next to each users mouse will be the login name and not an anonymously
generated one. Near the time slider there can be a button or checkbox to easily
switch the collaboration on and off. These two user interaction elements can be
grouped to a preference pane. If one user saves the Wiki page, this could be
intercepted and every command saved on the server before this event can be
deleted.

In the future there have to be also a feature to suppress the synchronization
of some events. At the moment the menus from every user are synchronized to
every other user, which is not the preferred behavior.
6 http://bloga.jp/ws/jq/wakachi/mecab/wakachi.html

44 Garagnon, Schlichting

Conflict Management The conflict management could be extended to Operational
Transformations, because in our solution it depends on the action taken by the
users, which user will win. For example, if two users are positioning the same
morph, the last command that arrives at the server will win. This is because the
position of a morph is absolute and so the last value will be used. An example
in which the first user wins is, if one user deletes a morph before another can
change the size of that morph. The deletion will invalidate the resizing command
of that morph.

Consecutive projects which will implement a better conflict management are
welcome.

Clock synchronization Events which are not originated by a user action, like the
tick of a ClockMorph are produced by every client nearly at the same time. These
multiple events could also collide with each other, if the users are in different time
zones. There are multiple solutions to solve these kind of conflicts, one solution is
that only one client produces these special events. But the problem with different
time zones is not considered with this solution. Not synchronizing these kind of
events would be another result to this problem.

References

1. Etherpad time-slider. http://www.youtube.com/watch?v=Endvb81oz80 (2009)
2. Dannert, J.: WebCards - Entwurf und Implementierung eines kollaborativen, graphis-

chen Web-Entwicklungssystems für Endanwender (2009)
3. Hickson, I.: The websocket api. W3C Working Draft 22 December 2009 (2010)
4. Nichols, D.A., Curtis, P., Dixon, M., Lamping, J.: High-latency, low-bandwidth

windowing in the jupiter collaboration system. In: UIST ’95: Proceedings of the 8th
annual ACM symposium on User interface and software technology (1995)

5. Wang, D., Mah, A., Lassen, S.: Google wave operational transformation. http://wave-
protocol.googlecode.com/hg/whitepapers/operational-transform/operational-
transform.html (2010)

Bringing TEX’s Paragraph Layout Algorithm to
the Lively Kernel

Seminar Web-based Development Environments

Tobias Pape

Hasso-Plattner-Institut, Potsdam
{firstname.lastname}@student.hpi.uni-potsdam.de

Abstract. The Lively Kernel as a web-based system uses a simple line
breaking algorithm to lay out its text. This class of algorithms is prone to
unpleasant output. More sophisticated algorithms exist, e. g., as used in
TEX, but are harder to understand. Visualizing the algorithm in a lively
manner may facilitate its understanding. Integrating the algorithm into
the Lively Kernel provides the basis for lively visualizing it.

1 Why TEX? A Motivation

The Lively Kernel is a web-based development- and runtime-environment that is
self-sustaining and focused on collaboration [4]. Its user interface is an implemen-
tation of the Morphic system [7, 8]. The notion of a morph conveys the principle
of objects that know how to represent themselves graphically. This also holds for
text to be used and displayed in the Lively Kernel.

However, like in most web-based systems, the text layout algorithm used is
a rather simple, straight-forward one. Under many circumstances the output is
undesirable; unfortunate combinations of words used in the text and the width of
the text to be created may lead to visual holes in the text. By the nature of this
class of algorithms, avoiding such cases is hard [6]. However, more sophisticated
algorithms exist that migitate this problem. E. g., the algorithm used by the TEX
typesetting system treats paragraphs as whole entities and avoids jagged lines
most of the time. On the contrary, such algorithms are more complex than the
straight-forward ones and often are harder to understand.

To make complex algorithms more conceivable, algorithm visualization may
be employed. Yet, most visualization techniques do not cope for the process
nature of algorithms and try to visualize dynamic facts statically, e. g., with
flow charts [9]. With the Lively Kernel, however a system exists that provides
means to build more lively applications, visualizations, in this case. That said,
the most natural way to convey facts or processes in the Lively Kernel is to
actually implement them in the Lively Kernel and present them interactively.
Thus, the aim of this work is to provide the Lively Kernel an implementation
of TEX paragraph layout algorithm and then present its mechanism using the
algorithm itself.

46 Pape

1.1 Notes on Synonyms

In order to describe paragraph layouting or, more precise, line breaking, two
viewpoints exist that may introduce confusion. A line of text can either denote a
physical line, i. e., a line with a certain physical width, a product of line breaking;
or a logical line, i. e., a conceptual line of text to be broken into parts. Conversely,
two viewpoints on paragraphs exist: the physical paragraph is a collection of
physical lines—line breaking already has been applied; the logical paragraph
correlates with the logical line: a text string not yet broken into physical lines.

To avoid confusion, the word “line” will denote the physical line unless stated
otherwise.

Paper Organization

Following this section, section 2 covers the concept of paragraph layouting via
line breaking with special respect to the algorithms of the Lively Kernel and
TEX. Then in section 3, the base implementation of the newly used algorithm
is described as well as its integration into the Lively Kernel. Then, in section 4
related work is given followed by a summary and an outlook in section 5.

2 Laying Out Paragraphs, Conceptually

The process of paragraph layouting mainly comprises line breaking, i. e., at which
points in a logical paragraph to introduce the start of a new physical line.1 As
pointed out earlier, different approaches exists to achieve this. In the following,
first the current approach used in the Lively Kernel is described. Then, the
approach used by TEX, the Knuth-Plass algorithm (kpa), is outlined briefly.
N.B.: Like most line breaking algorithms, both algorithms use the text width
or composition width as dominant restriction: no single line determined by the
algorithm shall be wider than the composition width specified by the user.

2.1 Text in the Lively Kernel

The main facility to show text in the Lively Kernel is the TextMorph. This morph
is a simple rectangular morph that holds a string2 to be rendered. Upon rendering
of the morph, line breaking is carried out by walking all text words of the string
and collecting them in a text line. The walking mechanism is supported by a so
called chunk stream that yields consecutive text words.

Text words Lively Kernel text words are wrappers for non-space text strings that
can be rendered to a Lively Kernel canvas, e. g., svg. Text words are created
lazily by a chunk stream during parsing of the input string. Also, text words
1 This has changed during the introduction of computers into typesetting, where the

former predominant task of spacing out has diminished in importance [6].
2 Text morphs may hold rich text, however, this is not covered here.

TEX Paragraph Layout for Lively-Kernel 47

���� �� � ���	
���� �
��� ��� ������� �����
�� � ���� 	��

���� �� � ���	
���� ����	����

��� ��� ������� ��������	����

�� � ���� 	�����	����

���� �� � ���	
���� � ��� ��� ������� ����� �� � ���� 	��

Fig. 1: Text rendering in the Lively Kernel: A string is split into text words that are
arranged in text lines of a maximum width.

are responsible for determining their own width by querying the Lively Kernel
font for the width of the word’s characters. A text word has an associated ‘raw’
element that can be directly drawn by the underlying rendering mechanism, e. g.,
svg as above. As an example, for the string in Figure 1 13 text words would be
created, each knowing about its width and an associcated ‘raw’ svg element.

The chunk stream For line breaking, the text words of a string belonging to
a text morph are processed sequentially. To do that the text string has to be
broken up into text words, and these have to be returned one after another. The
operations are carried out by the chunk stream:

1. Collect characters form the current position in the text string until
2. a space-denoting character is read.
3. Then form a text word form the collected characters,
4. determine its width and
5. return the text word.
6. Store the new position in the text string for the next iteration.

Text lines and line breaking Just before rendering the text morph, the aforemen-
tioned chunk stream is processed and text lines are formed. Each text line is
responsible for the rendering of the text word it contains.

The actual line breaking happens when the text lines are to be filled with
text words. As mentioned above, a certain limit for the text lines width exists:
the composition width. A text line is formed through the following process:

1. The chunk stream is queried for the next text word.
2. The new word’s width is added to the current line width.
3. If the composition width is overshot, end the line and put the word at the

beginning of a new line;
4. If not, add the text word to the current line and add the width for a space.
5. Do this until the chunk stream is empty.

48 Pape

Note that the process listed under Chunk stream is actually performed here
during the first step, hence, this sequence essentially makes up the arrow in
Figure 1.

After these steps, a text morph contains an array of text lines comprising
renderable text words. The algorithm’s straight-forward manner accounts for
its first fit classification, according to Knuth [5, p. 78]. This contrasts the TEX
paragraph layout algorithm which is described next.

2.2 The Knuth-Plass algorithm

The TEX typesetting system employs an algorithm for line breaking conceived
by Knuth and Plass in 1982 [6] which treats the paragraph it operates on as a
whole. Like the Lively Kernel line breaking algorithm, the kpa does not operate
directly on text strings but nodes which have similarities to Lively Kernel text
words. However, unlike in Lively Kernel the kpa nodes may stand for more than
text not containing white spaces. These nodes are generated by the TEX language
parser, yet, this process is not of interest here.

The nodes that resemble Lively Kernel text words best are boxes; they have
a certain width and material, mostly pure text content. The implicit spacing in
the Lively Kernel line breaking process contrasts with explicit nodes that carry
space information in the kpa: glues have a certain width as well as information
in how far this width may changed (called shrink- and stretchability). Last, an
invisible node in the kpa has no correspondant in the Lively Kernel: the penalty
node conveys the additional cost of a line break at a certain point in the text
string.

This is a TextMorph. I can span several Linesss if I have to.
410 810

700

760

400

450510

This is a TextMorph. I can span several Linesss if I have to.
810 400

700

760 450510

410
410

510

810810
1220

700
1110

760
1250

400400
1620

450
1560

Fig. 2: Simplified intermediate result of the kpa. Above: Five possible breakpoints
were found. The cost of the lines each breakpoint creates is given. Below: Additional to
the previous, the accumulated cost from the beginning of the paragraph is given. The
highlit sequence denotes the sequence of chosen breakpoints.

TEX Paragraph Layout for Lively-Kernel 49

Line breaking with the kpa Given a list of pre-arranged nodes, the kpa tries to
find the best sequence of line breaks by maximizing the ‘pleasantness’ of the line
breaks. To achieve this, the kpa uses a quantification of how bad a line break
may look: the badness. Considering the upper part of Figure 2, there are two
possible breakpoints for the line that would start with “can span several. . . ;” one
before and one right after the “I.” However, the former breakpoint would cause
the white space in that line so much to be shrunken to fit the desired width that
a badness value of 810 is allocated to it. For the latter one, not so much white
space has to be shrunken, hence, the value is lower: 700.

To generalize, given two possible breakpoints in a text string and a composition
width. Then the badness of a line formed by these breakpoints is obtained from
the ratio all the white space in that line has to be shrunken or stretched to
make the line width equal to the composition width. For more in-depth badness
calculation formulæ and how the value of penalty nodes contribute to it, refer to
the original algorithm paper [6].

The main method of the kpa is to (a) find all important possible line breaks,
(b) calculate their badness and, (c) choose that sequence of breakpoints among
the possible ones that has the least overall badness values. To ease this process,
the kpa employs a mathematical technique called dynamic programming [2].
Essentially, this conveys the constant accumulation of badness values from the
start of the paragraph up to the current possible breakpoint. In Figure 2 these
accumulated values are given in the lower part beneath the individual badness
values. Once these values and their accumulation have been calculated, it is
possible to walk back the path of least value. In the example, this means starting
from the end of the paragraph and choosing the path to the breakpoints before
or after the “I.” As the breakpoint after the “I” has an accumulated value of 1560,
which is less than 1620 for the other one, the breakpoint before the “I” would
be chosen. This continues until the start of the paragraph is reached. The found
sequence of breakpoints now results in actual lines and line breaks.

Comparing the Lively Kernel- and the kpa-approach, it is evident that the
former is a line centric, the latter a paragraph centric algorithm. Additionally,
the latter seems to inhibit more complexity and, hence, may need more time to
be understood and to be consequently implemented.

3 Implementation in the Lively Kernel

The kpa is more complex than the default Lively Kernel line breaking algorithm
and visualizing it may ease understanding it. The Lively Kernel provides a
programming environment that fosters interactivity and liveliness. However, to
provide these attributes to a visualization of the kpa, the algorithm itself has to
be implemented in the Lively Kernel. As the base language in the Lively Kernel
is JavaScript, the TypeSet implementation of the kpa has used as foundation;
it is described in the following. Then, its integration into the Lively Kernel and
the actual visualization of the kpa are shown.

50 Pape

3.1 The kpa in the Web: TypeSet

TypeSet by Bram Stein is an application of the kpa to the html5 canvas using
JavaScript [10]. It is intended as a first step towards a library of various line
breaking algorithms for the html5 canvas element. The implementation covers
the whole algorithm as in [6], nevertheless, the simplified version mentioned there
was not used and the as well mentioned extensions are yet to be implemented
except one: A proof of concept for integration of hyphenation exist.3

Written in JavaScript, TypeSet makes use of a few extensions to the JavaScript
standard library, namely extensions to Object and Array and an implementation
of a linked list. In order to interact with the html page TypeSet is used in, it uses
the jQuery library4. The data structures needed by the kpa are implemented
as simple constructor functions returning slim objects. This especially includes
boxes, glues, and penalties but also holds for breakpoints.

As pointed out in subsection 2.2, the kpa does not operate directly on
text strings but rather on a list of nodes. To provide the algorithm with this
list, TypeSet implements a set of formatters that turn a text string into a list
of nodes according to the desired formatting; centered, justified, and flush-left
formatters are included. To perform the transformation, the text string is split
at white space characters and all remaining sub-strings are turned into box-
nodes, unconditionally interleaved by node-sequences that denote a space in the
respective formatter. Hence, line break characters, tabulator characters and others
are treated all the same. After transformation, the TypeSet implementation works
like the TEX implementation.

3.2 Integration with the Lively Kernel

Whilst a full implementation of the kpa in JavaScript—TypeSet—is available,
integrating it into the Lively Kernel requires adoption.

The Class system The Lively Kernel provides a class system similar to that of
Smalltalk [3], contrasting the prototype style of pure JavaScript. In order to
consistently use TypeSet in the Lively Kernel, its object construtor style is to be
transformed into the class style of the Lively Kernel. Additionally, as no linked
list implementation was available in the Lively Kernel, a port of the TypeSet
linked list version is used. It is needed to maintain the list of breakpoints in the
main part of the kpa.

The Lively Kernel provides a namespacing system into which the TypeSet
implementation has been integrated; the projects.TeX namespace is reserved for
it while under development.

Hooking into text morphs The Lively Kernel provides an ecosystem of objects
that can all be interacted with at runtime. Lively Kernel Worlds, normally
3 http://www.bramstein.com/projects/typeset/flatland/
4 http://jquery.com/

TEX Paragraph Layout for Lively-Kernel 51

createLayer("TeXLayer");
layerClass(TeXLayer, TextMorph, {
assureNet: function() {
this.net = new projects.TeX.TeX.NodeNet(this.textString);
},
composeLines: function(proceed, initialStartIndex, initalTopLeft,

compositionWidth, font, testEarlyEnd) {
this.assureNet();
return this.net.composeLines(initialStartIndex, initalTopLeft,

compositionWidth, font, testEarlyEnd);
},
renderText: function(proceed, t, w) {
var result;
withLayers([TeXLayer], function(){ result = proceed(t,w); });
return result;

},
resetRendering: function(proceed) {
delete this.net;
proceed();

},
})

Listing 5.1: Slightly simplified form of the ContextJS layer used to enable TypeSet
line breaking in the Lively Kernel

html files, are such ecosystems—combining the kernel of Lively with specific
applications. For end user applications it would be natural to bootstrap a Lively
Kernel World and extend it with application code. Nevertheless, introducing
a different paragraph layout algorithm into the Lively Kernel involves changes
within the core parts, the Lively Kernel itself, which text morphs are part of. Now,
deliberately changing core logic of any system may result in unexpected behavior,
hence, isolation mechanisms are required. It would be possible to bootstrap a
Lively Kernel World and work on a copy of the core part without affecting other
Worlds, still, reintegrating these changes would be troublesome.

To overcome these issues, a facility for context oriented programming in
the Lively Kernel, ContextJS, is used [1]. That way, using the kpa instead of
the default Lively Kernel line breaking algorithm can be seen as a behavioral
deviation which can be layered over the default implementation. In this case,
the context to activate the layer of kpa behavior is explicit user request; Text
morphs that shall use kpa line breaking have to have the layer activated for
themselves.

When text is to be rendered in the Lively Kernel, a text morph is responsible
for its text string to be mapped to renderable objects (cf. subsection 2.1). Hence,
the behavioral deviation just mentioned has to affect the TextMorph class. The
key entry point for line breaking is the function composeLines() of TextMorph.
Replacing this function by the TypeSet implementation plus the initialization of

52 Pape

the node list (currently called net) is nearly everything needed to integrate the
new behavior. Find a simple version of this integration code in Listing 5.1. Note
that this listing includes two more functions to ensure that the layer containing
the required behavior is activated.

Using this layer, the TypeSet implementation of the kpa can easily be used
in any text morph throughout the Lively Kernel without affecting other text
morphs using the default implementation.

Text morph api The Lively Kernel is a highly interactive system. Therefore, the
text morph of the Lively Kernel includes numerous functions providing editing
behavior as well as positioning functions to help the Lively Kernel interpret user
events such as mouse moves or mouse clicks. Incidentally, all these api functions
are implemented in the class TextLine that implement the functionality described
in section 2.1. To recapitulate: the Lively Kernel line breaking algorithm turns
a text string into text lines of renderable objects. While producing renderable
object with the TypeSet implementation would be possible without the notion of
a text line, it seemed reasonable to introduce a text line class specific to the kpa
implementation to provide the required api functions: projects.TeX.TeX.Line.
Except for the render() function, all functions implement the api needed for
interaction.

Given the implementation just introduced it is possible to have text morphs
in the Lively Kernel use the kpa for line breaking. However, visualizing the
algorithm is missing at this point. Note that whilst all displaying capabilities
necessary are provided, editing of the text is not currently possible.

3.3 Visualizing the kpa

�������� �	
��������
��
�� ��	
��������� ������	������
�����
�
�������������	��� �������������	
���� ����	����������	
��� ��� ����	
��� � 	��	� 	��� ����
	������ �
��� ���� ����� ��
�����������	��
���� �������� �
	�������
�����������������
���	����
��������	�������������	�����������	����������� ���
�����
���	����
��	��������	�������������

�� ����� 	
��� ���
��
�� �	
�� ������ ���� 	���� �
���
� �
�� ���� �����	��� ��� ��� ����	
���� ��� 	��
�������	 �� �� ����	
��� 	��	 	�� ���
	����� �
�� ���
���� �� ����� �� ��	��
���� �������
	 �����
� ���
����� ����� �� 	�� �
���� ���	�� ��� � ����	 ���� �����	�
��� ����� �� ��� �
���	���
� 	�� �����	 �� � ���� ��

�������� �	
��������
��
�� ��	
��������� ������	������
�����
�
�������������	��� �������������	
���� ����	����������	
��� ��� ����	
��� � 	��	� 	��� ����
	������ �
��� ���� ����� ��
�����������	��
���� �������� �
	�������
�����������������
���	����
��������	�������������	�����������	����������� ���
���� �
���	����
�� 	��� �����	������������������� 	������
�������������	����
�������
�� ���	���	�	��	��������	����
��	�������� 	��� ����	�
���������������������������
	������������ �����������	����
	��������
������������	�
	�
����	�
������ �������������
	������	�
���

�� ����� 	
��� ���
��
�� �	
�� ������ ���� 	���� �
���
� �
�� ���� �����	��� ��� ��� ����	
���� ��� 	��
�������	 �� �� ����	
��� 	��	 	�� ���
	����� �
�� ���
���� �� ����� �� ��	��
���� �������
	 �����
� ���
����� ����� �� 	�� �
���� ���	�� ��� � ����	 ���� �����	�
��� ����� �� ��� �
���	���
� 	�� �����	 �� � ���� ���
��� 	�� ��� �� ���� ���� 	�� �
���� ��
�� ��	 ��	
	� 	�� �����	 ��� ��	 ��� �� 	�� ����	�
�� ��� ���
��� �� ����� ��� 	��� � ������ ����� ��� 	���
	 ��
�� �
�� ��� �����	
	� ��� 	�
� ���� �� ��� �����
	�
����	�
���

Fig. 3: The slider application: dragging the slider changes the amount of text to be
processed. Left: the kpa, right: the default algorithm.

TEX Paragraph Layout for Lively-Kernel 53

Line breaking is a process where, mostly, elements of a text string are pro-
cessed in an ordered manner. Is is thus possible to emulate the stream of text
that is processed by varying the text string’s length. A demo application has
been implemented that allows to choose the length of the text using a slider
(see Figure 3). From the upper to the lower part, the slider has been dragged to
the right, effectively augmenting the text to be rendered. That way, it is possible
to monitor the behavior of both algorithms available. Moreover, one key property
of the kpa can directly experienced: adding words to the end of a text can
affect the line breaking of previous lines. This will never happen in traditional
algorithms. This application forms the presentation basis for the implemented
visualizations.

�������� �	
��������
��
�� ��	
��������� ������	������
�����
�
�������������	��� �������������	
���� �����	����������	
��� ��� ����	
��� � 	��	� 	��� ����
	������ �
��� ���� ����� ��
�����������	��
���� �������� �
	�������
�����������������
���	����
��������	�������������	�����������	����������� ���
�����
���	����
��	��������	�������������������	��

�������� �	
��������
��
�� ��	
��������� ������	������
����� �!�"#$
�
�������������	��� �������������	
���� �����	����������	 �!�"%&
��� ��� ����	
��� � 	��	� 	��� ����
	������ �
��� ���� ����� �� !�"*$
�����������	��
���� �������� �
	�������
����������������� �!�+!/
���	����
��������	�������������	�����������	����������� ��� !�!$6
�����
���	����
��	��������	�������������������	�� !�!!+

Fig. 4: Example visualization of aspects of the kpa. Left: box nodes are highlit by
black rectangles around the text; glue nodes are denotet as orange rectangles. Right:
The number next to each line denotes the stretch ratio applied to that line.

Visualizing the kpa is a temporal application, i. e., not every time the kpa
is used for a text morph its visualization is desirable. Additionally, there are
different aspects of the algorithm to be visualized that are not of the same
interest every time. Seeing that, several ContextJS layers have been implemented,
each visualizing a specific algorithm aspect individually. For example, in Figure 4,
the left part visualized the box nodes (black rectangles around the text) and the
glue nodes (orange rectangles) of the text portion processed by the kpa. The
right part, however, visualized the stretch ratio applied to each line (cf. [6]).

�������� �	
��������
��
�� ��	
��������� ������	������
����� �!�"#$
�
�������������	��� �������������	
���� ����	����������	 �!�"%&
��� ��� ����	
��� � 	��	� 	��� ����
	������ �
��� ���� ����� �� !�"*$
�����������	��
���� �������� �
	�������
����������������� �!�+!/
���	����
��������	�������������	�����������	����������� ��� !�!$6
���� �
���	����
�� 	��� �����	������������������� 	������ !�!//
�������������	����
�������
�� ���	���	�	��	��������	���� �!�!+&
��	�������� 	��� ����	�
��������������������������� !�!*$
	������������ �����������	����
	��������
������������	�
	� �!�!!*
����	�
������ �������������
	������	�
��� !�!"!

$

Fig. 5: All visualization layers impemented have been applied to the text; different
aspects of the kpa are, thus, visualized simultaneously.

54 Pape

These layers can be combined easily. Hence, a general visualization as in
Figure 5 can be built up. In the figure mentioned, the following visualization
layers are used:

1. TeXBoxVisualizationLayer Highlighting boxes and glues, cf. the left part of
Figure 4.

2. TeXRatioVisualizationLayer Putting the stretch ratio of each line beside it,
cf. the right part of Figure 4.

3. TeXToleranceVisualizationLayer Displaying the currently used tolerance
value at the top left of the text. In Figure 5, it is the 2 in the upper left.
Note that the tolerance value determines what stretch ratio is considered
acceptable for lines at all.

All these layers can be activated, individually or all at once, while using the
slider application mentioned above. That way, the change of the individual status
and values used or produced during the line breaking algorithm can be monitored
easily by just dragging the slider—a lively visualization of the kpa.

4 Related Work

Line breaking has to be done in nearly every text-displaying application. However,
especially text related programs have to deal with line breaking. Incidentally,
non-trivial algorithms like the kpa are employed in several applications. TEX
and all related systems make use of the kpa or extensions thereof, e. g., by
pdfTEX [11]—whether with or without accompanying hyphenation algorithm. A
related algorithm is used in the (unpublished) hz-program by Herman Zapf. The
dtp program InDesign by Adobe is known to be loosely based on the kpa and
makes use of the hz-program.

Besides the reference implementation for the kpa, TEX, other implementa-
tions exist. TypeSet [10] was used as basis for the Lively Kernel implementation
presented here. The algorithm is also implemented by the Apache FOP (XML-
Formatting Objects processor).

5 Wrap Up: Outlook and Summary

While directly editing text using the kpa is not yet possible; the roundtrip ‘use
the default algorithm for editing and the kpa for displaying’ seems natural—the
kpa was invented with only displaying text in mind, not editing. Tool support
automating this roundtrip is to be implemented. For the visualization, more
aspects of the algorithm can be made visual, e. g., the stretch and shrink values
of certain nodes or how the possible breakpoints are acutally connected.

By means of the work presented, the goal set has been achieved. Using
TypeSet, an implementation of the paragraph layout algorithm used by TEX,
the Knuth-Plass algorithm, has been integrated into the Lively Kernel and can
optionally be used everywhere replacing the default algorithm. Also, three basic

