
Dynamic Contract Layers

Robert Hirschfeld Michael Perscheid Christian Schubert Malte Appeltauer
Software Architecture Group

Hasso-Plattner-Institute
University of Potsdam, Germany

{firstname.lastname}@hpi.uni-potsdam.de

ABSTRACT
Design by Contract (DBC) is a programming technique to
separate contract enforcement from application code. DBC
provides information about the applicability of methods and
helps to narrow down the search space in case of a soft-
ware failure. However, most DBC implementations suffer
from inflexibility: Contract enforcement can only be acti-
vated or deactivated at compile-time or start-up, contracts
are checked globally and cannot be restricted in their scope
such as to the current thread of execution, and contracts
cannot be grouped according to the concerns they relate to.

In this paper, we present dynamic contract layers (DCL)
for fine-grained and flexible contract management. Based on
ideas from context-oriented programming, we extend DBC
by a grouping mechanism for contracts, thread-local activa-
tion and deactivation of such groups, and selective contract
enforcement at run-time. PyDCL, our proof-of-concept im-
plementation of DCL, is built onto ContextPy, our COP ex-
tension for the Python programming language. We evaluate
our approach by applying PyDCL contracts to the Moin-
Moin Wiki framework.

Categories and Subject Descriptors
D.1 [Software]: Programming Techniques—Object-
Oriented Programming ; D.3.3 [Programming Lan-
guages]: Language Constructs and Features

General Terms
Languages, Design

Keywords
design by contract, dynamic contract layers, context-
oriented programming, software composition

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’10 March 22-26, 2010, Sierre, Switzerland.
Copyright 2010 ACM 978-1-60558-638-0/10/03 ...$10.00.

1. INTRODUCTION

Design by Contract. With Design by Contract (DBC [16,
21]) programmers can separate the specification of pre- and
postconditions and invariants from their application code to
improve code comprehensibility and quality. Such contracts
are explicit, machine-readable, and executable.

Preconditions check properties that must hold whenever
a method is entered. For example, preconditions can assert
that the object a method is invoked on is in a valid and ex-
pected state and that the parameters passed to this method
are both of the right type and conform to the constraints
imposed by the application domain.

Postconditions check properties that must hold whenever
a method returns to its caller. For example, postconditions
could check both if the object to be returned by a method
invocation conforms to constraints from the application do-
main and if the object the method was invoked on is left in
the expected state.

Invariants are defined for an entire class of objects and
are to be preserved by all invocations of (public) methods.

In DBC, pre- and postconditions and invariants form
a contract that—together with all (public) method
signatures—is part of the specification of the class. Such
contracts are established between the clients (or users) and
the supplier (or implementor) of a class. When calling a
method, the client has to make sure that all preconditions
of this method are fulfilled, while the supplier must assert
that the method returns a result that complies to the post-
conditions and leaves the method’s object in a state that
satisfies its invariants.

DBC Limitations. The ideas of DBC [21] and their first
incarnation in the Eiffel programming language [22] have
contributed to software engineering for almost two decades
now [27]. Still, for many applications, this approach is too
inflexible. In the following, we list some of the limitations
of DBC we are going to address in this paper.

Grouping. Pre- and postconditions are bound to a method
and invariants are bound to a class. There is no way to
explicitly group contracts or parts thereof. They are only
grouped implicitly by the given class structure. For instance,
grouping contracts related to specific requirements is almost
impossible since the implementation of most of the require-
ments are spread over several classes and so cannot be re-
lated to a single one [7, 9].

Scoping. Contracts can be activated or deactivated glob-
ally and only for an entire compilation unit. This can be

2169

an issue in a multi-threaded multi-user environment such as
a Web server, where requests from different users are pro-
cessed in different threads. Enabling contract enforcement
on a per-thread basis would, for example, allow developers
and maintainers to limit the scope of these contracts to a
particular control flow while the rest of the system remains
unaffected.

Dynamic Enforcement. In Eiffel’s original implementa-
tion and many other approaches to DBC, contracts are static
properties that are activated or deactivated at compile-time.
The en- and disabling of contracts in such systems can be
difficult, since it requires that executables with or without
contracts have to be re-compiled, binaries in the produc-
tion system must be exchanged, and the system has to be
restarted.

Contributions. In this paper, we present dynamic contract
layers (DCL), which augment the flexibility of state-of-the-
art DBC approaches by combining them with ideas from
context-oriented programming (COP [14]). DCL provides a
contract grouping mechanism orthogonal to or crosscutting
class hierarchies. It allows for a fine-grained thread-local
contract enforcement, where contracts can be selectively ac-
tivated and deactivated at run-time.

PyDCL is our implementation of DCL in and for the
Python programming language [28]. It builds on top of
and extends ContextPy, our library-based COP-extension
to Python. We evaluate DCL by applying PyDCL contracts
to the MoinMoin Wiki framework [11].

Outline. The remainder of this paper is organized as fol-
lows: Section 2 gives an overview of context-oriented pro-
gramming (COP) our approach is based on. Section 3 de-
scribes how we leverage the concepts of COP for DBC and
especially DCL. Section 4 explains our implementation of
ContextPy and PyDCL in more detail. Section 5 discusses
preliminary findings. Section 6 presents related work. Sec-
tion 7 concludes the paper and suggests future work.

2. CONTEXT-ORIENTED
PROGRAMMING

We propose an approach to dynamically compose con-
tracts to overcome the limitations of DBC introduced in
the previous section. It turns out that context-oriented pro-
gramming [14] (COP) is an ideal base for our extension to
DBC. For that reason, we give a brief introduction to the
COP paradigm. A broader introduction to COP is provided
in [14]. In the next section, we describe how we leverage the
concepts to enable grouping of contracts, run-time activa-
tion, and thread-local contract checking.

2.1 Overview
COP supports the explicit representation of context-

dependent behavioral variations. Such behavioral variations
can be grouped for comprehensibility and programmer con-
venience. They are activated or deactivated dynamically
at run-time, depending on the context of execution. For
safety reasons, most COP implementations allow to limit
such compositions to the local thread of control and to scope
their effect to the dynamic extend of a specific section of
the program. So far, COP has been implemented for sev-
eral languages such as Lisp [5], Smalltalk [13], Python [29],

1 employerLayer = layer("Employer")
2

3 class Person(object):
4 def __init__(self , name , employer):
5 self.name = name
6 self.employer = employer
7

8 @base
9 def getDetails(self):

10 return self.name
11

12 @around(employerLayer)
13 def getDetails(self):
14 return proceed () + "\n" + self.employer
15

16 person = Person("Michael Perscheid", "HPI")
17 print person.getDetails ()
18 with activelayer(employerLayer):
19 print person.getDetails ()

Listing 1: ContextPy Example

Ruby [26], and Java [2]. An overview of most of them is
provided in [1].

Context. Context is everything that can be accessed from
within a program, ranging from the domain information it
represents and the system’s meta-structure including its con-
trol flow to external state or events. Behavioral variations.
Behavioral variations are partial methods that can be ex-
ecuted around, before, or after the original functionality.
During its execution, a partial method can proceed to the
next variation provided by another layer or, if no such vari-
ation exists, to the next base method. Modularization. COP
introduces layers to group behavioral variations. These vari-
ations can crosscut the underlying module structure such
as the application’s class hierarchy. Layers group partial
method definitions implementing behavioral variations. Dy-
namic composition. Layers can be activated or deactivated
from within the program at run-time. Scoping. Layer ac-
tivation is controlled on a per-thread basis. In most imple-
mentations so far, it is also scoped to the dynamic extent of
the execution of a block of statements.

2.2 ContextPy
Listing 1 presents an illustrative example written in Con-

textPy, our context-oriented extension to Python.
First, we create a layer object employerLayer (Line 1).

After that, we implement a simple Person class with two at-
tributes describing the person’s name and employer (Lines 3–
14). The first definition of getDetails (Lines 8–10) repre-
sents the base method definition, as marked by the @base

decorator. It implements the default behavior returning the
person’s name attribute. The second method (Lines 12–14)
is a partial definition of getDetails and annotated with the
@around decorator. This method will be executed instead
of the base method whenever the layer employerLayer is
active. By using the built-in method proceed within the
method body (Line 14), we invoke the next partial or base
method.

After defining this class, we instantiate a Person object
and call getDetails twice, first without, and then with
layer activation (Lines 16-19). The execution without any
layer (Line 17) directly returns the name attribute. The sec-
ond invocation is placed within a with block that activates
employerLayer. Here, the method invocation also returns
information on employer in addition to the person’s name.

2170

1 from MoinMoin.Page import Page
2 from pydcl import requireContract , ensureContract
3 import cop , copy
4

5 textProcessing = cop.layer("Text Processing")
6

7 class PageEditor(Page):
8

9 @requireContract(__layer__ = (textProcessing ,))
10 def normalizeText(self , text , **kw):
11 assert isinstance(text , (str , unicode))
12 assert kw.get(’stripspaces ’, 0) in (0, 1)
13

14 @ensureContract(__layer__ = (textProcessing ,))
15 def normalizeText(self , text , **kw):
16 oldDict = {"lock": copy.deepcopy(self.lock)}
17 result = proceed(text , **kw)
18 assert isinstance(result , (str , unicode))
19 assert self.lock is oldDict["lock"]
20 return result
21

22 def normalizeText(self , text , **kw):
23 if text:
24 lines = text.splitlines ()
25 if kw.get(’stripspaces ’, 0):
26 lines = [line.rstrip () for line in lines]
27 if not lines [-1] == u’’:
28 lines.append(u’’)
29 text = u’\n’.join(lines)
30 return text

Listing 2: DCL Pre- and Postconditions

3. DYNAMIC CONTRACT LAYERS
In this section we present Dynamic Contract Layers

(DCL), our extension to DBC. We describe our COP-based
implementation of DCL, its improvementsover DBC, and a
domain-specific language for DCL contracts. We apply DCL
to the MoinMoin Wiki [11] taking MoinMoin’s normaliza-
tion of user input that is part of the text processing feature
as an example. Within the page editor, users can insert text
to change the content of a wiki page. Such text must be
normalized before it is stored by MoinMoin since different
browsers and operating systems may create different input
values.

3.1 DCL Contracts
As in the original DBC, DCL Contracts consist of pre-

and postconditions and invariants.
Preconditions ensure that the input values have the right

properties and that the object is in a valid state. The map-
ping of preconditions to COP concepts can be expressed
straightforwardly by partial methods that are executed be-
fore the base method. Developers implement their asser-
tions via partial methods (with the same signature as the
base method) and define it as a precondition. We provide
the annotation requireContract for that. In addition to
explicitly defined layers, we also add the globally accessible
requireLayer to each method. Listing 2 presents our ex-
ample from MoinMoin. Lines 9-12 define a partial method
for preconditions. The __layer__ parameter (Line 9) de-
clares an additional layer to group this condition. When the
requireLayer or textProcessing layer is activated, the pre-
condition method is executed before normalizeText, which
asserts that the input parameter text has the expected type
and the keyword dictionary is properly filled.

Postconditions ensure that the return values have the
right properties and that the object the message was sent

@invariant ()
def attributeTypes(self):
assert isinstance(self.do_revision_backup , (bool ,int))
assert isinstance(self.do_editor_backup , (bool ,int))
assert isinstance(self.lock , PageLock)
assert isinstance(self.uid_override , (NoneType ,str))

Listing 3: A DCL Invariant

to is still in a valid sate after returning to its caller. Since
DBC requires the comparison of old values—state before the
method was executed—with newly computed values after
the execution, a simple mapping to partial methods being
executed after the original one is not sufficient. Thus, we
map postconditions to around methods. With that, devel-
opers can store old values, proceed to the original method,
get the return values, and implement the postconditions.
Similarly to the preconditions, we have specified a new an-
notation called ensureContract that automatically adds the
ensureLayer. Listing 2 (Lines 14-20) illustrates postcondi-
tions within MoinMoin. However, this approach has also
some drawbacks—the need to explicitly store old values, to
explicitly call proceed, and to explicit pass on the result.
Here COP boilerplate code is in the way of the developers
and with that a source of errors. In Section 3.5, we address
these problems by introducing a DCL contract definition
language.

In DBC, invariants belong to a class and ensure that
some properties of that class are ensured at all time. An
invariant is usually evaluated before and after every call to
a (public) method. We map an invariant to two partial
methods—one executed before and one executed after each
method. We introduce an invariant annotation inserting
an invariantLayer for each partial method. Furthermore,
invariants must be implemented with respect to the asser-
tion evaluation rule (AER) of DBC. During the evaluation
of an assertion all subsequent method calls must be exe-
cuted without any evaluation [23]. Thus, we have to ensure
that all layers are deactivated during the execution of our
partial methods. We have extended COP with an all-layers-
deactivation that is wrapped around our invariants—a with

clause executes the invariant in the dynamic extend of all
deactivated layers, otherwise resulting in an infinite recur-
sion. Listing 3 shows an invariant for the PageEditor class
of MoinMoin that checks the proper types of each attribute
within that class.

3.2 Contract Grouping
Contract grouping and selective contract group activation

and deactivation allow us to keep things together that be-
long together. Criteria for forming such groups are up to
the developers, but requirements representations such as use
cases oder user stories work nicely for that. For example,
a contract group can encapsulate distinct application fea-
tures or certain kinds of checks, such as correct typing or
the range of parameter values. Also, instead of checking
the entire system, developers can provide contract groups
to verify system properties that most likely have to do with
the cause of the observed problem. Whenever necessary, de-
velopers can activate or deactivate one, many, or all such
groups.

We employ layers to group contracts decoupled from the
parts of class hierarchy they apply to. In COP, each layered

2171

method is assigned to exactly one layer, thus, each contract
layer would only belong to one group. DCL contracts should,
however, belong to several such groups. For that reason, we
have extended our approach so that partial methods can be
associated with more than one layer. Here a partial method
will be executed if at least one of the layers it is associated
with is activated.

3.3 Contract Scoping
Most DBC frameworks support only global contract acti-

vation. However, enabling all contracts may impose a sig-
nificant performance overhead. For instance, if we want to
trace an error in a multi-threaded server application by en-
forcing contracts, we would have to activate all contracts for
the entire system, which can lead to a decrease in perfor-
mance.

In DCL, thread-based contract scoping restricts contract
enforcement to a specific control flow. In a production sys-
tem, for example, developers test system behavior without
influencing the execution flow of concurrent clients. This
can especially be useful in multi-threaded Web applications
where developers want to debug the system by checking con-
tracts deployed into the hosted system without disrupting
uninvolved users or with decreasing performance. To only
check contracts of classes and methods involved in a spe-
cific control flow and a selected group of contracts, DCL
takes advantage of dynamic layer composition via COP’s
with statement.

In addition to dynamic extent-based scoping of the basic
COP approach, we have extended our ContextPy implemen-
tation with the feature of global layer activation. In general,
dynamic adaptation must ensure the system’s consistency,
thus, global activation should be carefully applied. However,
DCL’s contracts are not expected to affect the behavior of
any base method, so global activation of dynamic contract
layers should be applicable without the introduction of mod-
ifications to the system’s original behavior.

3.4 Dynamic Contract Enforcement
Classic DBC contract enforcement being a compile-time

or startup option requires to restart or even to recompile a
deployed system in order to switch contracts on or off, which
obviously is impractical for, for example, running diagnostics
in a production setting and supporting short feedback cycles
in an agile development environment.

DCL’s dynamic contract enforcement deals with the acti-
vation and deactivation of contracts at run-time. Dynamic
composition is a basic property of COP and since DCL is
based on COP, it inherits this property automatically. With
the help of COP’s with statement, developers can choose
which contracts to be activated where and when, without
the need to rebuild the complete system. The activation of
corresponding contract layers can be done directly by the
developers in the code or by some external means such as a
debugger or other development or deployment tools.

3.5 A Domain-specific Language for DCL
In the previous examples, we presented DCL using plain

COP language support. Declaring contracts using partial
methods is a powerful means, since these partial methods
can contain any code that might be necessary to check the
contracts. However, for most applications of DCL such as
type constraints and simple assertions, this expressiveness

is not necessary but may lead to longer and more complex
contract definitions instead. Here, we provide a very small
domain-specific language that can be used directly before a
method definition. So, developers can both write and see
the contracts next to the methods they apply to. We offer
two annotations—@require and @ensure—for the definition
of simple pre- and postconditions,. The assertion statements
and the optional list of contract groups are passed as argu-
ments to these annotations.

Some postconditions require to compare an object’s state
before and after a method execution. Using ContextPy syn-
tax, we create a dictionary to which we put a deep copy of
the object, call proceed to execute the method, and com-
pare the new state with the copied one. For this idiom, our
DSL provides a build-in method called old that refers to
an object’s state before the method was executed. Further-
more, developers can access the return value with the special
keyword __result__.

In addition to that, our DSL provides two annotations
called @requireTypes and @ensureTypes to state type con-
straints for parameters and return values. This is particu-
larly helpful in dynamically typed languages. As arguments,
the first annotation accepts the method’s parameters with
assigned lists of allowed types and the second one expects
the possible return types. Both annotations can be extended
with additional contract layers.

Listing 4 shows a refactoring of the example introduced
in Listing 2 using this domain-specific language.

4. IMPLEMENTATION
In this section, we present the implementation of Con-

textPy, our COP library for Python, and PyDCL, its DCL
extension.

4.1 ContextPy
ContextPy is our COP implementation for the Python

programming language1. It supports the layer-in-class ap-
proach [1] and with that allows developers to define their
partial methods within the scope of the actual classes these
methods are contributing to. Similar to all other COP exten-
sions so far, ContextPy provides both layers, partial meth-
ods, and dynamic scoping.

Layers. In ContextPy layers are represented by regular ob-
jects that provide the identities layers need to exhibit at
run-time. Layer access has to be managed by the develop-
ers.

Layer Composition. The representation of activated and
deactivated layers is handled by two stacks—one for thread-
specific and one for globally activated layers. Layers can be
(de-)activated using Python’s with statement or by library
methods for stack operations.

Partial Methods. In Python, each class has its own dictio-
nary that maps identifiers (keys) to objects (values). For
instance, a method is stored with its name as key and the
method object as value. We introduce a layered method de-
scriptor that consists of all (partial) methods and a cache

1PyContext [29] is another COP library in Python. Its class-
in-layer approach is not suitable for DBC since contracts
should be located close to the base method they apply to.

2172

1 from MoinMoin.Page import Page
2 from pydcl import require , requireTypes , ensure , ensureTypes
3

4 textProcessing = cop.layer("Text Processing")
5

6 class PageEditor(Page):
7

8 @require("kw.get(’stripspaces ’,0) in (0,1)", __layer__ = (textProcessing ,))
9 @requireTypes(text = [str , unicode], kw = [dict], __layer__ = (textProcessing ,))

10 @ensure("old(self.lock) == self.lock", __layer__ = (textProcessing ,))
11 @ensureTypes(str , unicode , __layer__ = (textProcessing ,))
12 def normalizeText(self , text , **kw):
13 ...

Listing 4: Simplified DCL Contract Definition

to store behavioral variations. As soon as a partial method
is found in Python’s class initialization, we change the base
method object to our layered method descriptor and store
all further partial methods, the related layer, and the kind
of execution within this descriptor object.

Layer-aware Method Lookup. We are leveraging
Python’s binding mechanism so that—to developers—there
is no difference between a call to a base method and a lay-
ered method descriptor. During such a call, we are creating
a proxy object that computes which partial methods should
be executed based on the activated layers pushed onto both
layer stacks. More precisely, we are creating a linked list of
so-called advice consisting of the partial method object and
a reference to the next method in the list. This is done only
once and then stored in the cache of the layered method
descriptor. By calling the advice chain, each advice decides
to forward the call or not depending on its type and the
proceed statement.

4.2 PyDCL
PyDCL implements DCL based on ContextPy.

Design by Contract. As emphasized previously, imple-
menting pre- and postconditions as pure partial methods
is straightforward. However, the realization of invariants
requires a new meta class that overrides the initialization
of classes. If an invariant is detected during the class con-
struction, we store this partial method in a separate list and
change the meta class. Having all methods in the class dic-
tionary, the overridden initialization is called which inserts
all invariants before and after each method. Thus, we trans-
form each method into a layered method descriptor with
the corresponding invariants as partial methods. The AER
principle is realized by an additional decorator around each
invariant that disables all layers before and activates them
again afterwards.

Domain-specific Language. The two contract definition
languages are implemented in three steps. In the analy-
sis step, we identify the method signature of the original
method and the value of the optional __layer__ parameter.
In the transformation step, we translate the input of the con-
tract definition languages into Python source code. Direct
conditions are translated into pure assertions and type con-
tracts are further wrapped by an isinstance method. The
implementation of the old keyword creates additional source
code for postconditions; annotated objects are deeply copied

before the proceed call to the original method happens and
afterwards inserted in the related assertions. In the compile
step, the generated source code is compiled in anonymous
partial methods. These methods and the original one are
added to a layered method descriptor.

5. DISCUSSION
In the following, we discuss what we have learned from the

implementation of our approach to DCL and its application
to the MoinMoin Wiki.

Contract Definitions. Writing contracts for each method
manually is a laborious and tedious task. Often, developers
do not even know which pre- and postconditions a method
has to fulfill or which invariants are meaningful for a class. In
future work, we are interested in exploring inductive debug-
ging concepts in combination with automatically generated
contracts [32]. This knowledge should be derived from run-
time data of controlled and passed unit and acceptance tests.
For instance, the parameter of a method has an integer type
in each observed run. It is very likely that the method al-
ways expects an integer as input type and, based on this
assumption, we can establish a corresponding precondition.

Layer Assignment. We suggest features as primary group-
ing concept from the user’s point of view. Most often, fail-
ures are discovered by users. And usually the users describe
the erroneous behavior of the system from their perspective.
Thus, it makes sense to choose and activate corresponding
feature layers that check contracts of participating meth-
ods. Unfortunately, so far developers have to identify these
feature-method-relationships manually. Feature analysis [9]
is a research area that provides an answer to the question
which methods are concerned in which features. By com-
bining feature analysis with our approach to DBC, we hope
to automate the process of feature-based grouping contracts
within layers.

Evaluation. Our experiments with MoinMoin are a first
step to validating our approach. More case studies are re-
quired to evaluate DCL in a more elaborate manner. First
and foremost, we are interested in developer feedback to im-
prove our approach for larger-scale projects.

6. RELATED WORK
The roots of DBC can be traced back to the work of

Floyd [8] and Hoare [15]. Later work by Parnas [24] already

2173

shows ideas to be found in DBC. Besides the original DBC
implementation in Eiffel [21], we can find DBC extensions
to several other programming languages.

Today, there are at least three freely available implementa-
tions of DBC in Python: Design by Contract by Plösch [25],
ContractPy [31], and PyDBC [4]. While PyDBC—much like
our work—uses seperate (partial) methods for checking pre-
conditions, postconditions, and invariants and using a wrap-
per method to invoke partial methods, it has no dynamic
properties and no support for the AER. ContractPy, like
the implementation by Plösch, is based on docstring-parsing.
For every module or class an explicit function call is required
to parse these docstrings, compile the assertions, and replace
the methods by wrappers that perform the checks. While
the docstring approach provides a tighter notation, they are
usually limited in functionality. There are no provisions for
avoiding recursive contract checks, but the old notation is
supported.

There are even more implementations for Java. iContract
by Kramer [20] uses structured comments (like [25, 31]) for
specifying contracts and provides a preprocessor that instru-
ments the original source code with contract checks. It has
sufficient support for the AER to avoid recursive contract
checks. There is no support for the old notation. jCon-
tractor by Karaorman et.al. [17] places contract checks in
separate methods. A factory method or alternatively a class
loader transforms these methods (apparently on a byte-code
level) to invoke the contract checks. There is support for
the old notation, but there does not seem to be provisions
against recursive contract checks. In Duncan and Hölzle’s
Handshake [6] contracts are read from a separate file with
a Java-like syntax. Those contracts can be compiled sepa-
rately. It comes with a modified version of the standard C
library which is used by the JVM for file I/O. Handshake
intercepts such calls and supplements the class files with con-
tracts. It does not depend on a class-loader-base mechanism
(which might not be available in all Java implementations),
nor does it require modifications to the code (neither the
client nor the supplier). Since the classes are modified on
a byte-code level and the contracts can be written without
access to the source code. As a downside, their implementa-
tion neither supports the old notation, nor does it prevent
recursive assertion evaluation.

Guerreiro [10] implements contracts for C++. Classes
which want to use contracts, need to derive from a special
class that provides this functionality. There is limited sup-
port for the old notation which requires the explicit record-
ing of the pre-state. He claims that this approach supports
activation and deactivation of contract checks per class and
at run-time. However, there is no lazy evaluation in C++,
assertions will be evaluated in any case and the result is
disregarded when the checks are disabled. Errors are hid-
den and performance will not increase significantly. The
approach does not avoid recursive assertion checks.

Aspect-oriented programming [19] (AOP) provides lan-
guage abstractions to encapsulate crosscutting concerns,
thus it is conceptually related to COP. In general, AOP
separates the implementation of crosscutting concerns from
the main application logic. In contrast to that, COP allows
for the specification of partial methods close to their base
definitions. This declaration style corresponds to contract
specifications next to their respective methods. The specific
features of DCL such as contract grouping, contract scop-

ing, and dynamic contract activation can be represented by
COP abstractions more naturally than with aspects.

Contract4J [30] is an AspectJ [18] based tool that sup-
ports classic DBC. As in our PyDCL, contracts are specified
via annotations. However, Contract4J is not as dynamic as
PyDCL since AspectJ does not support dynamic aspect de-
ployment. Some AOP languages, such as CaesarJ [3] and
AspectS [12] overcome this limitation and provide dynamic
aspect weaving, though they lack in supporting annotation-
based pointcuts. Since our goal is to specify contracts close
to their methods, a pointcut-based description within an as-
pect module appears undesirable.

7. SUMMARY AND OUTLOOK
In this paper, we have presented dynamic contract layers,

or DCL, as an extension to design by contract. Based on
context-oriented programming, its layer construct, and its
dynamic means of composition, we extend the flexibility of
current design by contract approaches in three ways. First,
DCL allows for expressing contracts as partial method def-
initions and for grouping them into contract layers, prefer-
ably according to the concerns a particular subset of con-
tracts has to support. Second, DCL enables the scoping of
contract layer activations to the local thread of execution.
Third, DCL facilitates contract layer activation and deacti-
vation dynamically at run-time.

Future work will be concerned with inductive debugging
techniques [32]. We want to investigate automated contract
generation. Using dynamic analysis techniques, we would
like to process trace data from unit tests to derive from
that sound assertions covering both state and behavior. We
are also interested in automatically relating contract layers
to requirements and other artifacts throughout the entire
software lifecycle.

Acknowledgments
We would like to thank Gregor Schmidt, Martin von Löwis,
and Michael Haupt for fruitful discussions and valuable con-
tributions.

8. REFERENCES
[1] M. Appeltauer, R. Hirschfeld, M. Haupt, J. Lincke,

and M. Perscheid. A Comparison of Context-Oriented
Programming Languages. In International Workshop
on Context-Oriented Programming, pages 1–6, 2009.

[2] M. Appeltauer, R. Hirschfeld, and H. Masuhara.
Improving the Development of Context-dependent
Java Applications with ContextJ. In International
Workshop on Context-Oriented Programming, pages
1–5, 2009.

[3] I. Aracic, V. Gasiunas, M. Mezini, and K. Ostermann.
Overview of CaesarJ. In Transactions on
Aspect-Oriented Software Development, pages
135–173, 2006.

[4] D. Arbuckle. PyDBC - Contracts for Python 2.2+.
Version 0.2.
http://savannah.nongnu.org/projects/pydbc/.

[5] P. Costanza and R. Hirschfeld. Language Constructs
for Context-oriented Programming: An Overview of
ContextL. In Dynamic Languages Symposium, pages
1–10, 2005.

2174

[6] A. Duncan and U. Hoelzle. Adding Contracts to Java
with Handshake. Technical Report TRCS98-32,
University of California, Santa Barbara, USA, 1998.

[7] T. Eisenbarth, R. Koschke, and D. Simon. Locating
Features in Source Code. In Transactions on Software
Engineering, volume 29, pages 210–224, 2003.

[8] R. W. Floyd. Assigning Means To Programs. In
Mathematical Aspects of Computer Science,
volume 19, pages 19–31, 1967.

[9] O. Greevy. Enriching Reverse Engineering with
Feature Analysis. PhD thesis, University of Bern, 2007.

[10] P. Guerreiro. Simple Support for Design by Contract
in C++. In Technology of Object-Oriented Languages
and Systems, page 24, 2001.

[11] J. Hermann. The MoinMoin Wiki Engine - Easy to
Use, Full-Featured and Extensible Wiki Software.
Version 1.8.4. http://moinmo.in/.

[12] R. Hirschfeld. AspectS - Aspect-Oriented
Programming with Squeak. In International
Conference NetObjectDays on Objects, Components,
Architectures, Services, and Applications for a
Networked World, pages 216–232, 2003.

[13] R. Hirschfeld, P. Costanza, and M. Haupt. An
Introduction to Context-Oriented Programming with
ContextS. In Generative and Transformational
Techniques in Software Engineering II, pages 396–407,
2008.

[14] R. Hirschfeld, P. Costanza, and O. Nierstrasz.
Context-Oriented Programming. In Journal of Object
Technology, volume 7, pages 125–151, 2008.

[15] C. A. R. Hoare. An Axiomatic Basis for Computer
Programming. In Communications of the ACM,
volume 26, pages 53–56, 1983.

[16] J.-M. Jézéquel and B. Meyer. Design by Contract:
The Lessons of Ariane. In Computer, volume 30, pages
129–130, 1997.

[17] M. Karaorman, U. Hölzle, and J. Bruno. jContractor:
A Reflective Java Library to Support Design By
Contract. Technical Report TRCS98-31, University of
California, Santa Barbara, USA, 1998.

[18] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. An Overview of
AspectJ. In European Conference on Object-Oriented
Programming, pages 327–354, 2001.

[19] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-oriented Programming. In European
Conference on Object-Oriented Programming, pages
220–242, 1997.

[20] R. Kramer. iContract - The Java Design by Contract
Tool. In Technology of Object-Oriented Languages and
Systems, page 295, 1998.

[21] B. Meyer. Applying ”Design by Contract”. In
Computer, volume 25, pages 40–51, 1992.

[22] B. Meyer. Eiffel: The Language. Prentice-Hall, 1992.

[23] B. Meyer. Object-Oriented Software Construction.
Prentice-Hall, 1997.

[24] D. L. Parnas. A Technique for Software Module
Specification with Examples. In Communications of
the ACM, volume 15, pages 330–336, 1972.

[25] R. Plösch. Design By Contract for Python. Asia

Pacific and International Software Engineering
Conference., pages 213–219, 1997.

[26] G. Schmidt. ContextR & ContextWiki -
Modularisierung von Webanwendungen mit
kontextorientierter Programmierung. Master’s thesis,
Hasso-Plattner-Institut an der Universität Potsdam,
2008.

[27] J. Tantivongsathaporn and D. Stearns. An Experience
With Design by Contract. In Asia Pacific Software
Engineering Conference, pages 335–341, 2006.

[28] G. Van Rossum. The Python Language Reference
Manual. Network Theory Ltd., 2003.

[29] M. von Löwis, M. Denker, and O. Nierstrasz.
Context-Oriented Programming: Beyond Layers. In
International Conference on Dynamic Languages,
pages 143–156, 2007.

[30] D. Wampler. Contract4J for Design by Contract in
Java: Design Pattern-Like Protocols and Aspect
Interfaces. In Workshop on Aspects, Components, and
Patterns for Infrastructure Software, pages 27–30,
2006.

[31] T. Way. ContractPy - Programming by Contract for
Python. Version 1.4.
http://www.wayforward.net/pycontract/.

[32] A. Zeller. Why Programs Fail: A Guide to Systematic
Debugging. Morgan Kaufmann, 2005.

2175

