
Reflective designs

R. Hirschfeld and R. Lämmel

Abstract: The authors render runtime system adaptations by design-level concepts such that
running systems can be adapted and examined at a higher level of abstraction. The overall idea is to
express design decisions as applications of design operators to be carried out at runtime. Design
operators can implement design patterns for use at runtime. Applications of design operators are
made explicit as design elements in the running system such that they can be traced, reconfigured,
and made undone. This approach enables reflective designs: on one side, design operators employ
reflection to perform runtime adaptations; on the other side, design elements provide an additional
reflection protocol to examine and configure performed adaptations. The approach helps
understanding the development and the maintenance of the class of software systems that cannot
tolerate downtime or frequent shutdown-revise-startup cycles. The authors have designed and
implemented a class library for programming with reflective designs in Squeak/Smalltalk. The
library employs reflection and dynamic aspect-oriented programming. In addition to that, the
authors have implemented tool support for versatile navigation in a system that is adapted
continuously at runtime.

1 Introduction

1.1 Problem context: runtime system
adaptations

Our work on ReflectiveDesigns is concerned with adaptation
of software systems at runtime, as needed for dynamic
component coordination [1], runtime system configuration
[2], dynamic service adaptation [3, 4], and rapid prototyping
without shutdown-revise-startup cycles [5]. Runtime adap-
tability is crucial for systems with strong availability
demands; think of telecommunications. Downtime of such
systems can barely be tolerated. Software maintenance and
evolution have to be carried out in the running system.

ReflectiveDesigns enhance object-oriented design and
programming by techniques for runtime system adaptation.
There are two key notions: design elements and design
operators, which we will explain in turn.

1.2 Key notion I: design elements

We contend that a program is structured according to design
decisions. We require that design decisions are represented
explicitly in the program. Thereby, software design
becomes traceable in the program. We even require that
design decisions are to be represented explicitly in the
running system. We use the term design element to denote
representations of design decisions in programs. In fact, we
require that design elements are amenable to reflection such
that design decisions can be observed and modified at

runtime. With that, the notion of runtime system adaptations
boils down to explicit construction, modification, and
retirement of design elements.

1.3 Key notion II: design operators

When compared to basic techniques such as the use of a
metaobject protocol [6], the use of design elements makes
runtime system adaptations more disciplined and more
manageable. To this end, we provide abstractions that
capture common design elements in a reusable manner.
Applications of such abstractions perform system adap-
tations at a design level; hence, we call them design
operators. Our work, so far, has concentrated on operators
that model the realisation of common design patterns [7].
The view ‘design patterns as operators’ also occurs in pre-
vious work on static metaprogramming [8–13]. The novelty
of our work is that our operators serve for runtime system
adaptation, and runtime reflection on designs.

1.4 Practical realisation in Squeak/Smalltalk

We have designed and implemented a ReflectiveDesigns
framework, which is a class library for Squeak=Smalltalk.
The implementation makes original use of infrastructure for
reflection, method wrappers [14], and aspect-oriented
programming with AspectS [15]; [Note 1]. Using the
ReflectiveDesigns framework, we have exercised some
scenarios of runtime system adaptations, as illustrated later.

2 A motivating example

We will now exercise run-system adaptations.
Implementation details are omitted at this stage.

q IEE, 2005

IEE Proceedings online no. 20041097

doi: 10.1049/ip-sen:20041097

R. Hirschfeld is with DoCoMo Communications Laboratories Europe,
Munich, Germany

R. Lämmel is with the Department of Information Management and
Software Engineering, Vrije Universiteit, De Boelelaan 1081a, NL-1081
HV Amsterdam, The Netherlands and also with Centrum voor Wiskunde en
Informatica, NL-1098 SJ, Amsterdam

Paper first received 13th July and in revised form 19th September 2004

Note 1: AspectS has been developed and is maintained by the authors. It is
available for the Squeak implementation of Smalltalk at http://www.
prakinf.tu-ilmenau.de/~hirsch/Projects/Squeak/AspectS/. We plan to
distribute the ReflectiveDesigns framework with AspectS.

IEE Proc.-Softw., Vol. 152, No. 1, February 200538

2.1 Construction of design elements

We use a simple scenario:

Ulrike and Ellen work in a company that runs a distributed

information system to automate most computer-based

work. Ellen has observed that Ulrike’s printouts are

generally of interest as they cover subjects like software

maintenance. So the two agree on decorating Ulrike’s print

service such that each print job that is initiated by Ulrike is

also forwarded to Ellen via the email protocol.

This can be accomplished while the information system is
up and running, and all relevant objects that have to be
adapted already exist. In this example, we do not assume
that the availability demands for our information system are
exceptionally high. Nevertheless, we assume that our
system evolves too frequently for shutdown-revise-startup
cycles to be tolerable, which implies that runtime adap-
tations have to be considered.

The following steps need to be carried out:

1. We construct a design element deco for decoration.
2. We configure deco’s code block for decoration to
forward print jobs to Ellen.
3. We configure deco’s target object to be the print service
of Ulrike.
4. We activate the design element deco.

We use the term decoration here in the sense of the
decorator design pattern [7]. We recall that the intent of this
design pattern is the following: “Attach additional respon-
sibilities to an object dynamically.” However, it is important
to note that our approach does not require any preparation of
the source code. It is not just the decorated functionality that
is chosen at runtime. The entire possibility of decoration is
added at runtime by using the design operator for
decoration. Hence, we have completed a scenario of an
unanticipated runtime system adaptation.

2.2 Examination of design elements

We continue the scenario from above:

The company is reviewed regarding internal security and

confidentiality guidelines. As part of the review, the

information system is examined. The referees want to

systematically browse through the system to assess any

redirection, any decoration, and any other modification

that is active in the system.

As a result, each active design element is examined as
follows:

. Is there undesirable data flow among the ‘participants’ in
the design element?
. Is there any design element that seems to be unused?
. Is the behaviour of adapted methods reasonably
preserved?
. Are the reasons for adapted methods reasonably clear?

The introspection interface of design elements allows one to
easily navigate to participants, to view code blocks for
adaptation, and to assess other meta-data. Hence, the
required review task is carried out more easily for design
elements than for low-level system patches.

2.3 Reconfiguration of design elements

The above examination implied a corrective system
adaptation:

The referees stated that arbitrary forwarding would

incidentally also forward documents that are readily

labelled as confidential. Hence, forwarding should be

constrained accordingly.

We need to reconfigure the design element deco as
follows:

1. deco is deactivated immediately until the problem is
solved.
2. deco is reconfigured to perform conditional forwarding.
The condition checks whether the confidentiality of the
document at hand rules out forwarding.
3. deco is reactivated.

It is worth mentioning that a reconfiguration of deco is not
the only option for the required system adaptation. We could
also have added an additional design element that adapts
deco so that the combined behaviour is conditional
forwarding. Yet another option is that deco retires
altogether, and a better design element is built from scratch.
These different options can all be accomplished while the
system is running.

2.4 Retirement of design elements

Eventually, we might face the following situation:

Forwarding is found to be convenient throughout the

company. To this end, a general feature is designed such

that all system users can subscribe to any employee’s print

service, while each individual has to regulate whether a

document is publicly visible or not.

This scenario is implemented as follows:

1. deco is deactivated.
2. deco retires.
3. A new, more general design element for forwarding is
put into service.

In fact, this general feature for forwarding is eventually
accepted as a permanent part of the system. So it is decided
that the forwarding feature is woven into the system while
offline on Christmas Eve. Making system adaptations
permanent like that eliminates runtime overhead of transient
adaptations.

3 Basics of system adaptations

Before we lay out the advanced notions of design elements
and design operators, we will review relevant basics of
system adaptations. In particular, we will discuss the
different intents of adaptability, and the different times
when to adapt systems. Eventually, we will discuss two
major options for runtime system adaptations:

. Adding variation points for anticipated adaptations to the
system design.
. Employing language support for unanticipated
adaptations.

We will relate to standard design problems in illustrative
examples.

3.1 Hard-coded variations

In Fig. 1, there is a class hierarchy that involves three
different traversal operations. Parts of the traversal code are
scattered over the classes in the class hierarchy. Adding yet
another traversal operation in the same way would imply
changing all classes.

In Fig. 2, there is an extended StringMorph class from
Squeak’s Morphic system to allow for bordered string
morphs. The variation bordered vs. unbordered string
morphs is expressed here by conditional code. Adding

IEE Proc.-Softw., Vol. 152, No. 1, February 2005 39

another variation would imply changing the actual class
StringMorph.

Both designs do not make variation points explicit in
the design, but they rather hardcode a fixed number of
variations. New variations cannot be isolated in a modular
manner, but existing code would have to be modified.
Consequently, the development-time extensibility of these
designs is poor.

3.2 Variation points in the system design

The aforementioned circumstances call for refactoring such
that the design patterns visitor and decorator are instan-
tiated. The resulting designs are shown in Fig. 3 and Fig. 4.
As for the visitor (Fig. 3), we implement an interface for the
double-dispatch protocol in each class of the Node
hierarchy that is subject to traversal. Then, each new
traversal can be defined as a subclass of NodeVisitor, which
models a family of visit methods — one for each kind of
object. As for the decorator (Fig. 4), we use object
composition to equip StringMorphs with additional
behaviour for borders.

We note that refactoring, with its inherent impact on code,
is normally understood as a form of system adaptation that is
done during development and maintenance time [16, 17],
when the system is offline. There is no fundamental reason
to restrict refactoring to offline transformations. However,
corresponding runtime approaches require sophisticated
techniques to deal with the migration of objects that
instantiate affected classes [18–21].

3.3 Adaptability intents

The two refactored designs both expose variation points that
were missing in the original designs, and that were needed
for variation in certain dimensions. However, the two
examples emphasise different intents of adaptability:

. Development-time modularity (visitor).

. Runtime adaptability (decorator).

That is, the primary promise of the visitor pattern is to allow
for adding new traversals by means of providing just one
new class for each traversal, without changing existing
classes. This is clearly an example of modular extension at
development time. It is merely a convenient side effect that
such a design also provides benefits at runtime:

. Runtime extensibility: a new traversal class can be loaded
dynamically.
. Runtime adaptability: functionality can be parameterised
in visitor objects.

By contrast, the issue of runtime adaptability is dominating
for the decorator pattern. The primary promise of the
pattern is to allow for dynamic attachment of responsi-
bilities by means of plain object composition. By commit-
ting to this pattern at development time, we anticipate the
corresponding kind of runtime adaptations.

3.4 Limits of anticipated runtime adaptations

The conventional implementation of the decorator pattern
implies that the decorated object and the undecorated object
carry different object identities. This often leads to ‘object
schizophrenia’: upon completed decoration, parts of the
program might accidentally continue to refer to the
undecorated object because this is the reference that was
stored initially. There are several ways of tackling this
problem, e.g.:

. Obligatory top decorator. The design can be elaborated as
follows. Objects, that are potentially subject to decoration,
are hosted by a dedicated top decorator. Elsewhere in the
system, we always refer to the top decorator. Any additional
decorator ends up between top decorator and hosted object.
. Low-level redirection. If available, we can employ an
(expensive) operation to replace references to the undeco-
rated object by the reference to the decorated object. For
instance, Squeak provides an operation become:with:.

Fig. 1 Traversal code scattered over a class hierarchy

Fig. 2 Conditional code for variant selection

Fig. 3 A visitor for modularised traversal operations

IEE Proc.-Softw., Vol. 152, No. 1, February 200540

Both solutions indicate general limitations of anticipated
runtime adaptations. The first solution illustrates the tension
between complexity of designs and robustness of adaptation
techniques. The second solution demonstrates incomplete
anticipation.

3.5 Unanticipated runtime adaptations

So far we have focused on the classic OOD approach. That
is, we have anticipated adaptations in the design. A different
approach is to employ language support for unanticipated
adaptations. In Fig. 5, we approach to the decoration
problem by employing an advanced modularisation tech-
nique. That is, we employ runtime around advice for
methods, as provided by AspectS [15] and other frameworks
for dynamic aspect-oriented programming. Such expres-
siveness is also called method-call interception elsewhere
[22, 23]. Consequently, the design in Fig. 5 does not just
comprise normal classes but also an aspect, which hosts
the around advise for the two methods drawOn and
measureContents that need to be adapted for bordered
StringMorphs. Variation of behaviour does not need to
be anticipated in the static design any longer because the
aspect can be dynamically woven. The aforementioned

problem with object schizophrenia does not appear because
there is just one object reference.

3.6 Runtime provision of variation points

While the visitor pattern provided us with development-
time modularity for traversals, we can further improve on
this design by employing a runtime adaptation. In Fig. 6, we
use runtime introductions to superimpose the double-
dispatch protocol of the visitor pattern onto the system.
That is, the aspect adds implementations of the method
acceptNodeVisitor for the two concrete classes
Leaf and Expression that are involved in the Node
hierarchy. Such expressiveness is again readily provided by
AspectS. This example illustrates once more that runtime
adaptations can be used to add variation points that
otherwise had to be anticipated at development time.

3.7 Summary

This Section went through a transition from variation points
that are explicit in the design of a system to unanticipated
adaptations based on dedicated language support. There are
different forms of such language support:

Fig. 4 A decorator for dynamic attachment of responsibilities

Fig. 5 Aspectual decoration with around advice

IEE Proc.-Softw., Vol. 152, No. 1, February 2005 41

. Primitives for reference replacement, dynamic class
loading, and others.
. Superimposition of structure and behaviour onto a system
based on a join-point model as in aspect-oriented program-
ming [24, 25]. We note that static weaving is sufficient for
modular extension at the code level, while dynamic weaving
is necessary for runtime system extension.
. A metaobject protocol or meta-programming framework
can allow for almost arbitrary rewriting of the system.
Rewriting can be performed at different times including
compile-time and runtime.

4 Requirements for reflective designs

Reflective designs are designs that employ design elements
and design operators. We will now characterise reflective
designs in more details.

4.1 Design elements — explicit
representations of design decisions

We require that design decisions are represented explicitly
at the source code level and in the running program. We
assume that design decisions can be viewed as runtime
system adaptations. We use the term ‘design element’ to
denote representations of design decisions in the running
system. Technically, a design element can be modelled as
follows:

. We use meta-data to represent the design decisions.

. We use a proper object instead.

. We use a dedicated team of objects.

We summarise the life cycle of design elements in Fig. 7.
A design element can be in three states: inactive, active, or
retired. We say that a design element is inactive when it
does not affect the system. We assume that design elements
are inactive upon construction. Upon completed configur-
ation, they can be activated. Retirement of active design
elements requires previous deactivation.

4.2 Design operators — parameterised
abstractions for design elements

We obviously need a scheme for making design decisions
operational. To this end, our approach to reflective designs
provides operators for runtime system adaptations. It is clear
that such operators can only be provided in the context of a
sufficiently reflective programming system. We classify
design operators as follows:

. Additive operators superimpose additional structure or
behaviour onto the running software system. These
operators rely on a join-point model to refer to points in
the execution of the given system, just as in aspect-oriented
programming. The applications of additive operators, like
all design operators, can be made undone.
. Subtractive operators identify and remove slices of
behaviour or structure in the running software system. We
note that subtractive operators are needed to remove parts of
a system that were statically contributed. (That is,
subtractive operators are not needed to reverse the effects
of additive operators, since the latter is merely about making
adaptations undone.) Subtractive operators, like additive
operators, rely on a join-point model.
. Refactoring operators revise the running system in a
semantics-preserving manner. Such adaptations can involve
invasive code changes, changed interfaces, and changes in
terms of the join points that are exposed by the system.

Actual applications of such operators result in two effects.
Firstly, the corresponding design elements are constructed.
Secondly, the system’s actual structure and behaviour is
adapted as intended by the design decision at hand.
Applications of design operators are undone by deactivating
the corresponding design element. In case an inactive
element is never ever needed again, we can let the element
retire. In addition to the classification given above, we
expect design operators to be grouped in categories. For
example, different implementations of the same design
pattern are grouped in a category.

4.3 Design-level reflection

Design elements can be examined and (re-) configured.
Examination and (re-) configuration are meant in the sense of
introspection and intercession. We recall that introspection
denotes the observation or read-only part of reflection, while
intercession denotes the modification or write-enabled part
of reflection. Classic object-oriented introspection and
intercession concerns the fields and methods of objects.
Design-level introspection and intercession are concerned
with design-level concepts such as the list of participants of a
given design element. A single participant is simply a pair of
a descriptive role and an entity of the following kind:

. A class or a set thereof.

. An object or a set thereof.

. The above two but qualified with method or field names.

Fig. 6 Aspectual introduction of double-dispatch protocol

Fig. 7 The life cycle of design elements

IEE Proc.-Softw., Vol. 152, No. 1, February 200542

For instance, a design element for a decorator lists
participants as follows. There is a role component, which
is mapped to an object qualified by a method name. There is
also a role decorator, which is mapped to an object with the
additional responsibility. A slightly more general scheme
for a decorator is that the role component maps to a set of
objects qualified by a method name. This allows for reuse of
decorator instances.

Participants can be examined for each design element.
This is design-level introspection. Design elements can be
configured with regard to specific participants for prescribed
roles. This is design-level intercession. Furthermore, for
each object in the running system, we can introspect the
adaptations, i.e., a list of design elements, that affect the
object at hand.

5 Programming with reflective designs

We will now illustrate the use of the ReflectiveDesigns
framework from the perspective of a Squeak/Smalltalk
programmer. To this end, we will trivialise the decoration
example from the motivation section so that we can actually
exercise the life cycle of a design element in just a few lines.
We will consider a demo scenario for a smart proxy.

5.1 Objects to deal with

We assume an object myObj that will eventually serve as
the subject of the proxy in the terminology for the proxy
pattern [7]. This object is of class MySampleClass,
which implements methods as follows:

returnSeven
" 7 “returns integer 7”

returnThree
" 3 “returns integer 3”

We also assume an objectmyRealSubj that will eventually
serve as the real subject of the proxy, again, according to the
common terminology. That is, myRealSubj provides new
behaviour meant to replace the one of myObj. The object
myRealSubj defines the methods returnSeven and
returnThree differently:

returnSeven
" ‘seven’ “returns string seven rather

than integer 7”
returnThree
" ‘three’ “returns string three rather

than integer 3”

5.2 Construction, configuration, activation

All the statements that follow can be executed just in the
given order. The following line constructs the proxy:

myProxy RdProxyAspect new.

The class RdProxyAspect provides a specific aspect-
oriented implementation of the proxy pattern, but these
implementation details are not relevant here. We only need to
obey the configuration protocol for proxies. The following
lines of code start with the configuration of myProxy:

myProxy
proxy: MySampleClass
selectors:f#returnSeveng asSet.

This configuration captures that the proxy is supposed to
affect objects of class MySampleClass, and more
specifically invocations of the method returnSeven.
This configuration is sufficient for the moment. We activate
the smart proxy as follows:

myProxy activate. “system adaptation
becomes effective”

5.3 Impact tracking and reconfiguration

We note that proxies according to RdProxyAspect are
instance-specific in the sense that each affected subject and
the corresponding real subject need to be registered
explicitly. Hence, the configuration, performed so far, is
incomplete; we only have specified the class of affected
objects so far. This incomplete configuration manifests itself
such that all methods of myObj still compute as usual. We
capture this expectation in assertions as follows:

myObj assert: myObj returnThree ¼ 3:
“still returns 3”

myObj assert: myObj returnSeven ¼ 7:
“still returns 7”

These assertions are executed silently, which means that our
assumptions about the system behaviour are substantiated.
The following lines reconfigure the proxy such that it has an
impact on the system:

myProxy
addSubject: myObj “what to intercept”
realSubject: myRealSubj. “what to do”

That is, we configure myProxy such that myRealSubj
provides the new functionality, and myObj is going to be
affected. The invocation of returnSeven should give a
different result than before, while the invocation of
returnThree should still behave the same. We can
again capture these expectations in assertions as follows:

myObj assert: myObj returnThree ¼ 3:
“unchanged”

myObj assert: myObj returnSeven ¼ ‘seven’.
“adapted!!”

The assertions demonstrate the impact of the activated
design element myProxy.

5.4 Retirement of the design element

The following statements illustrate the retirement of the
proxy:

myProxy deactivate. “adaptation no longer
appreciated”

myObj assert: myObj returnThree ¼ 3:
“as before”

myObj assert: myObj returnSeven ¼ 7:
“back to normal”

This style of exercising the life cycle of design elements,
including the use of assertions, qualifies the session as a
useful unit test. In the ReflectiveDesigns framework, we
document design operators and adaptation scenarios just
like that.

6 An architecture for reflective designs

We have implemented reflective designs as a class library in
Squeak/Smalltalk — the ReflectiveDesigns framework. We
will now discuss the overall structure of the Reflective-
Designs framework. We will report on essential program-
ming techniques used in the implementation of the
framework, and will link these techniques to achievable
benefits such as reconfigurability and adaptiveness. Finally,
we will assess the transposition of typical design patterns to
the level of reflective designs.

IEE Proc.-Softw., Vol. 152, No. 1, February 2005 43

6.1 Housekeeping

Our current implementation of the ReflectiveDesigns frame-
work comprises a central authority — the ReflectiveDesigns
center, which is a special object RdCenter. All design
operators and design elements are known to RdCenter.
The registration and management of all these entities rely on
reflection and existing Squeak/Smalltalk protocols. For
instance, each design element registers with RdCenter
upon construction as part of the initialisation phase:

initialize
self addDependent: RdCenter current.

That is, we use Smalltalk’s change/update protocol to
establish a link between design elements and RdCenter.
Generic design-level introspective functionality is sup-
ported by the API of RdCenter. For instance, the
following services are provided:

. designOperators — all classes for design operators.

. designOperators: aCategory — dito, but per
category.
. designCategories — all such categories.
. designElements — all active and inactive design
elements.
. designElements: anOperator — dito, but per
operator.

As explained earlier, each object can be introspected to
report the adaptations applied to it. For reasons of
efficiency, RdCenter also contributes central data struc-
tures for such object-based introspective services. Likewise,
the RdCenter contributes to additional tests for design
elements, e.g.:

. affects: anObject — test if the design element
affects the given object.
. affects: anObject selector: aSymbol —
dito, but per method.

6.2 Programming layers

The ReflectiveDesigns framework involves the layers shown
in Fig. 8. The top layer is for the user of reflective designs.
This layer hosts classes for design operators. The
functionality implemented by these classes supports the
life cycle of design elements. The next layer, adaptation
idioms, provides functionality and data structures for
traceable runtime system adaptations. This layer promotes
reuse in the top layer. The next layer, AspectS, is the aspect-
oriented framework AspectS [15], which can be con-
veniently used to describe some typical kinds of system
adaptations. The next layer, method wrappers [14], is
employed in the implementation of AspectS. The bottom
layer stands for low-level reflection via the metaobject
protocol (MOP) of Squeak/Smalltalk. The idea is that layers
at a higher level of abstraction perform less lower level
reflection.

6.3 Aspect-oriented idioms

Some forms of additive and subtractive adaptations can be
conveniently expressed by concepts of aspect-oriented
programming (AOP), as available in the dynamic AOP
framework AspectS. In particular, the following kinds of
adaptations can be expressed:

. Introduction of methods.

. Removal of methods.

. Revision of method behaviour.

One can use pointcuts to address the places in a system that
are to be adapted. Advice can be used to define new
methods, which is also called a runtime introduction, or to
revise existing methods, which is also called method-call
interception.

There are two idioms that help us to detach ourselves
from plain AOP at the top layer for design operators. We
place these idioms in a class RdAspect (read as
ReflectiveDesigns — aspects), which inherits from AspectS’
base class AsAspect:

. Introduce a method into a given class.
introduce: aClass
selector: aSymbol
with: aBlockContext
qualifier: anAsAdviceQualifier

. Perform method-call interception for a method of a given
class.
intercept: aClass
selector: aSymbol
with: aBlockContext
qualifier: anAsAdviceQualifier

The implementation of this API supports traceability and
participation in change/update protocols. These idioms
are particularly convenient for ‘point-wise’ system
adaptations, where a specific object or a specific method
is adapted.

It is instructive to notice the following link between
classic OOD and ReflectiveDesigns. While classic object-
oriented designs anticipate variation points via the use of
subclassing and object composition, reflective designs
additionally employ the two dynamic AOP idioms
described above.

6.4 Reconfigurability by data dictionaries

Design operators often deal with mapping entities such as
objects or methods to other entities of the same kind or
simply to code bocks. This can be viewed as drawing
‘connectors’ in an architectural sense. With regard to design
patterns, a good example is the mediator pattern [7], where
colleagues request services, and these requests are handled
by the mediator such that they are forwarded to suitable
colleagues. In the ReflectiveDesigns framework, we employ
data dictionaries in the implementation of all design
operators that draw connectors. Data dictionaries provide
a high degree of reconfigurability because they can
represent connectors very explicitly. By contrast, a
conventional implementation of connectors limits trace-
ability and reconfigurability. For example, the mediator

Fig. 8 Layers in the ReflectiveDesigns framework

The top layer provides the operators for the framework user. The bottom
layer provides low-level reflection for reflective designs. The inner layers
support runtime system adaptations at increasing levels of abstraction

IEE Proc.-Softw., Vol. 152, No. 1, February 200544

pattern [7] is normally implemented by statements that
translate incoming calls (somehow) into outgoing calls.
Hence, the connectors are not immediately traceable.

6.5 Programming techniques at a glance

As a kind of benchmark, we have investigated the design
patterns of ‘Gang of Four’ (GoF; [7]) regarding the
possibility of using a number of programming techniques
in their implementations. In this investigation, we have found
attractive implementations that serve runtime system
adaptations better than conventional approaches. In Fig. 9,
we show all GoF patterns with columns for selected
programming techniques. We retain the normal grouping
of creational, structural and behavioural patterns.

Programming techniques covered in Fig. 9 are:

. The use of data dictionaries as described above.

. The use of structural reflection, beneficial for making
designs more adaptive or generic. A good example is the
visitor pattern where the sub-objects of any given object can
be determined by introspection.
. The use of method-call interception as described above.
. The use of runtime introductions as described above.

We summarise: pattern implementations that involve data
dictionaries, runtime introductions, method-call intercep-
tion, or structural reflections are meaningful examples of
design operators. Such added value can be reported for
16 out of 23 patterns. For the remaining 7 patterns, we did
not find runtime solutions with added value. This either
means that the conventional implementation is satisfactory,

or an implementation is trivial simply because the pattern is
readily supported in Squeak/Smalltalk — as in the case of
iterators. We note that a minor benefit can be claimed for all
23 design patterns. That is, the mere construction of
design elements, at the very least, serves the traceability
(or documentation) of design decisions.

7 Implementations of design operators

We will now discuss representative implementation details
for some design operators The selected operators implement
the design patterns visitor, factory, and proxy in a specific
manner. We will demonstrate the role of programming
techniques for basic reflection, dynamic weaving, and data
dictionaries.

7.1 Implementation of the visitor pattern

In Section 3, we outlined a runtime version of the visitor
pattern, where a double-dispatch protocol is injected into the
system using runtime introductions. Another possible
implementation of the visitor pattern is to modularise all
visit methods in one aspect, and then to inject these
various methods into the corresponding classes, again, by
runtime introductions. The double-dispatch protocol is not
needed for this option. We will now consider yet another
implementation, which is highly generic and flexible.

Our generic visitor object implements the following
genericVisit method:

genericVisit: anObject
(self visited includes: anObject)
ifFalse: [
self count: self countþ 1:
anObject ifNotNil: [self visited add:

anObject].
(self traversalStop: anObject)
ifFalse: [
self depth: self depthþ 1:
(self traversalStrategy: anObject)

value: anObject.
self depth: self depth� 1]].

Given anObject, the method first checks whether this
object has been visited already. We only continue if this
test evaluates to false, since we want to rule out cycles.
We continue by incrementing a node counter, and by adding
the object to visited. Then we check whether the object
is registered in traversalStop. We only continue if
this test evaluates to false. Next we lookup and invoke
the specific traversalStrategy for anObject,
while we maintain an increased depth during this step.
We refer to [26] for a discussion of generic visitors in
Smalltalk, which however does not explore all the variation
points considered here.

The method traversalStrategy immediately
accesses a data dictionary that maps classes to blocks
with class-specific traversal strategies. The use of a data
dictionary makes visitors highly configurable. The employ-
ment of Smalltalk’s metaobject protocol is made explicit in
the following default for traversalStrategy:

defaultIndexedInstVarTraversalStrategy
" [:anObject j
1 to: anObject class instSize do: [:idx j
(anObject instVarAt: idx) genericAccept:

self]]

That is, we iterate over instance variables of the given object,
and we let them accept the visitor at hand In fact, we

Fig. 9 Techniques used in ReflectiveDesigns implementations of
design patterns

Pattern Data dict. Reflection Intercept. Introduct.

Abstract Factory p p

Builder p p p

Factory Method

Prototype p p

Singleton

Adapter p p

Bridge p p

Composite

Decorator p p

Facade

Flyweight

Proxy p p

Chain of Resp. p

Command

Interpreter

Iterator

Mediator p

Memento p

Observer p p

State p p

Strategy p p

Template Method p

Visitor p p p

IEE Proc.-Softw., Vol. 152, No. 1, February 2005 45

assume a method genericAccept, to be implemented by
any object that is encountered during traversal. As a simple
example of a design operator, we consider the injection of
this genericAccept method into the system. The
corresponding operator RdGenericAccept subclasses
AspectS’s base class AsAspect because the underlying
adaptation will employ runtime introductions. The system
adaptation is described by the following method:

introGenericAcccept
self
introduce: Object
selector: #acceptGenericVisitor :
with: self genericAcceptBlock
qualifier: f#receiverClassSpecific g:

genericAcceptBlock
[:receiver:arguments:aspect:client j

arguments first genericVisit: receiver].

So the generic accept method is added to the class Object.
Its implementation immediately redirects the gener-
icAccept method to the genericVisit method, but
subclasses can favour a different scheme as a means of
customising traversal.

7.2 Implementation of the factory pattern

A factory is an object that is able to construct ‘products’ of
different kinds. The conventional approach [7] is to handle
each product by a dedicated method. Another approach is to
use a data dictionary as a mapping from product descriptors
to code blocks for product construction. The following
implementation combines these two options. In this way, we
obtain a highly configurable factory that is still conveniently
used via method calls.

The class RdFactoryAspect hosts the design oper-
ator for factories. The class must subclass AsAspect
because the underlying adaptation will employ runtime
introductions. The system adaptation is described by the
following method:

extendFactory: aSymbol part:
aBlockContext classes: aSet
self
introduce: self class
selector: aSymbol
with: aBlockContext
qualifier: anAsAdviceQualifier.

self factoryKeys add: aSymbol.
self factoryResults at: aSymbol put:

aSet.

This method registers a new product descriptor aSymbol
together with a block for construction. The descriptor is
viewed as a method name, too, and the corresponding
method for product construction is injected in the
system with a runtime introduction. The method
extendFactory is also parameterised by aSet of
classes, which is meant to document the possible classes
of the constructed product. The product descriptions and
the intended classes are also maintained in collections
factoryKeys and factoryResults.

As part of the protocol for design-level reflection, we
have required that we can access the participants for every
design element. We illustrate this concept via the simplified
implementation of the participants method for the
factory pattern:

participants
" IdentityDictionary new
at: #AbstractFactory put: self;

at: #ConcreteFactory put: self;
at:#AbstractProduct put: self

factoryKeys;
at: #ConcreteProduct put: self

factoryResults;
at: #Client put: (Smalltalk pointersTo:

self class);
yourself

This dictionary relates to the common terminology [7].
There are roles for the abstract and concrete factory, for
abstract and concrete products, and their are presumably
clients. In the given implementation of the abstract factory
pattern, the design object itself (namely, self) serves as
both abstract and concrete factory. The classes of abstract
and concrete products are retrieved from the data diction-
aries factoryKeys and factoryResults.

7.3 Implementation of the proxy pattern

The corresponding design operator is hosted in a class
RdProxyAspect, which subclasses AsAspect because
the underlying adaptation will employ method-call intercep-
tion. The method for configuring the proxy is the following:

proxy: aClass selector: aSymbol
self
intercept: aClass
selector: aSymbol
with: (self proxyBlock: aSymbol)
qualifier: f#receiverInstanceSpecificg:

proxyBlock: aSymbol
"[:receiver :arguments :aspect :client

:clientMethod j
(self subjects at: receiver)
perform: aSymbol
withArguments: arguments]

That is, constructing a proxy comes down to the injection of
around advice into the running system. The code block
proxyBlock forwards intercepted method calls according
to the content of a data dictionary subjects. Initially,
this data dictionary models the identity function.

The following method of RdProxyAspect facilitates
configuration of the proxy. That is, we can add a subject
together with the corresponding real subject:

addSubject: anObject realSubject:
anotherObject
self receivers add: anObject.
self subjects add: anObject �.
anotherObject.

self changed: f#reflectiveDesigns:self:g:
The collection receivers keeps track of affected
receivers for efficient impact tracking. The collection
subjects encodes the actual mapping of subjects to
real subjects. The last line in the method implementation
contributes to the change/update protocol for design
elements. That is, a change related to reflective-
Designs is indicated, and self is included as a means
to report the changed object.

We use the proxy pattern to illustrate another point,
namely the provision of meta-data and documentation for
design operators. In our implementation, classes for design
operators are tagged by a method designOperator.
This allows us to gather all design operators via introspec-
tion. For our proxy implementation we have:

designOperator
" RdProxy

IEE Proc.-Softw., Vol. 152, No. 1, February 200546

The return value RdProxy describes the category of the
operator at hand. In fact, there can be several implemen-
tations for the same kind of adaptation scenario. There is
also a documentation for each design operator available. For
the proxy implementation at hand, there is the following
documentation:

implementationDescription
" ’ThisisanimplementationofPROXY(207,’,

self designOperator printString,
’), based on AspectS. . . .’

8 Tool support for reflective designs

Smalltalk environments are highly interactive. For instance,
several ways of browsing the system are supported. Hence,
it is important to provide seamless interactive tool support
for reflective designs. Accordingly, we have extended some
existing tools, and we have provided new tools. The tool
extensions are particularly interesting in so far that we have
implemented them as self-applications of the Reflective-
Designs framework, e.g., the browsers are adapted by using
appropriate design elements.

8.1 Elaboration of browsers and inspectors

Important interactive tools in the Squeak environment are
the following:

. System browser: browse all classes as organised in
categories.
. Hierarchy browser: browse all classes as organised in the
class hierarchy.
. Inspector and object explorer: inspect and change objects.
. Debugger: debug system execution.

Navigating in the system is simplified by connecting these
tools and views. For instance, the pop-up menu for a class
allows one to inspect all instances of that class. The
elaborated systems browser is illustrated in Fig. 10. The
elaborated inspector is illustrated in Fig. 11. The elabor-
ations highlight adaptations, and they support new forms of
navigation such as

. going from an affected class to the relevant adaptation, or

. going from a design element to any of its participants.

Such design navigation adds to the normal dimensions of
navigating in a Smalltalk image. One can readily obtain
information about the design-level structure of a system,
about previously performed adaptations. Clearly, these
navigation features rely on the examination protocol for
design elements.

8.2 The ReflectiveDesigns browser

We have developed a new browser, which we call the
ReflectiveDesigns browser. It bundles several views that
relate to design operators and design elements. The
ReflectiveDesigns browser operates on the ReflectiveDe-
signs center. From the perspective of the ReflectiveDesigns
browser, the ReflectiveDesigns center is a simple, object-
oriented framework that views design operators as plug-ins,
and that keeps track of inactive and active design elements.

A screen-shot of ReflectiveDesigns browser is shown in
Fig. 12. There are six panels:

. Left upper panel: registered categories of design
operators.
. Left lower panel: documentation for selection in left
upper panel.
. Middle upper panel: registered design operators of the
selected category.
. Middle lower panel: documentation for selection in
middle upper panel.
. Right upper panel: inactive and active design elements of
that kind.
. Right lower panel: object explorer for the selected design
element.

The pop-menus offer services like the following:

. Browse the documentation of a design operator or its
category.
. Browse all references to an operator in the system.
. Inspect the participants of a design element.
. Browse classes and instances that are affected by a design
element.

Fig. 10 Squeak’s system browser with awareness of reflective designs

All classes that are affected by system adaptations are highlighted. The pop-up menus for classes and methods readily allow the programmer to navigate to the
“applied adaptations”. One can browse the code for the adaptations (i.e., the classes with design operators), and one can inspect the instances for the adaptations
(i.e., the design elements)

IEE Proc.-Softw., Vol. 152, No. 1, February 2005 47

With the help of the panels, one can learn about design
operators and their uses in the system. More generally, these
services enable navigation in the Squeak/Smalltalk image in
relation to reflective designs. Hence, they complement
classic browsing services. We note that one can use the
panels to preselect design operators or design elements of
interest for subsequent navigation in the system. That is,
only preselected adaptations will be highlighted during
browsing. Such selective highlighting is important for
effective navigation in a system that is affected by many
adaptations.

8.3 Advanced tool support

There is also a need for tool support that goes beyond
browsing and navigation. In particular, we consider the
following two techniques as important for a complete notion
of reflective designs:

. Interactive tool support for the life-cycle of design
elements: This boils down to dialogues per adaptation
scenario. These dialogues facilitate construction, configur-
ation, activation, and deactivation of design elements. In
terms of the provided GUI, this can be compared to user
interfaces of code generators for design patterns such as in
the seminal work by Budinksy et al. [27]. However, in our
setup, the dialogues facilitate runtime system adaptations.
. Native support for debugging reflective designs: It is
inappropriate to step through the low-level code that has
been inserted by system adaptations. We need to enhance
the protocol for design-level reflection with respect to
debugging. For instance, we need to provide means such
that low-level actions can be skipped during debugging, and
that design-level views are made available at breakpoints.

We are currently integrating such concepts into the
ReflectiveDesigns framework.

Fig. 11 Inspection of design elements

We introspect a proxy, which is an instance RdProxyAspect; so it is implemented as an aspect. There are fields like receivers and senders related to
the join-point model; proxies can be potentially receiver-specific. There is a compound advice field, which is supposed to hold the code block for the proxy.
There is also a field telling us that the proxy is installed. Via the pop-up menu, we can inspect involved participants in case the object is a design element,
and we can inspect applied adaptations for the object, if any. The participants for the proxy are shown on the right

Fig. 12 The ReflectiveDesigns browser for design operators and design elements

The categories of design operators all deal with design patterns. The specific design operators in the middle are the implementations that are available for the
selected category. The design elements for the selected implementations are shown on the right

IEE Proc.-Softw., Vol. 152, No. 1, February 200548

8.4 Implementation of the browser
adaptation

The browser adaptation itself comes down to design elements
that decorate the normal browser functionality such that they
add highlighting and menu entries. These decorators perform
design examination, as explained earlier, to determine the
actual entries to be highlighted, and the data behind the menu
entries. The following fragment is the code block for the
decorator that optionally highlights an item in the list of
classes that are shown by the system browser:

classItemConversionBlock
" [:item :foo :font j
morph StringMorph contents:
item font: font.

(Smalltalk at: item withBlanksTrimmed
asSymbol) rdAffected
ifTrue: [morph emphasis: rdEmphasis].
morph]

That is, the block iterates over a list of menu items that
represent class names. The class is extracted from the item,
and then its method rdAffected is invoked as to check
whether this class participates in any design element. If this
is the case, then the emphasis of the item is adapted, i.e.,
items are turned into bold face and they are underlined; as it
was shown in Fig. 10. A number of similar design elements
complete the browser adaptation.

9 Related work

9.1 System adaptability by design

The conventional approach to runtime adaptability is to
make adaptation opportunities explicit in the design, as
discussed in Section 3. To this end, suitable design patterns
such as proxy, decorator, strategy, bridge, and others are
deployed in programs, class libraries, and frameworks [7].
Prominent software platforms like WebSphere [28] readily
provide explicit adaptation opportunities in this manner.
A sophisticated form of explicit adaptation opportunities is
exemplified by Zdun’s pattern language for enabling
aspect-oriented idioms in conventional object-oriented
programming languages [29].

In this context, the contribution of reflective designs is to
make the transition from anticipated system adaptations to
runtime system adaptations. We note that we emphasised
the criterion of runtime adaptability, but it is clear that this is
just one of the several criteria that need to be harmonised in
the class libraries and software systems. Other criteria are
efficiency, robustness, and safe extensibility. This tension
has been analysed by Frick et al. [30, 31].

9.2 Technology for system adaptations

Technology for adaptations prior to runtime, e.g., byte-code
engineering [32–34], compile-time reflection [35], or static
weaving of aspects with AspectJ and others [36] are clearly
too early for general reflective designs. Design operators
require certain bits of runtime reflection. In some cases, it is
convenient to define design operators in terms of higher-
level aspect-oriented expressiveness rather than lower-level
reflection expressiveness. While we used AspectS in these
cases, there are similarly expressive frameworks for
Smalltalk [37, 38], and for other languages as well, e.g.,
Handi-Wrap [39] or PROSE [5, 40] for Java. The reflective
status of design elements improves on the normal situation
in adapted systems, with no or only incidental information
about the performed system adaptations left.

9.3 Reflective programming

In terms of expressiveness, reflective designs rely on a
reflective programming setup. In this context, the contri-
bution of reflective designs is to provide a layer for design-
level reflection. This layer complements classic reflection
and other recent work on reflection, e.g.:

. Static type safety, high efficiency [41–44].

. Other high-level reflection protocols [45, 46].

. Reification of messages as with composition filters by
Aksit et al. [47].
. Advanced integration of aspects and reflection [48, 49].

9.4 Design patterns as operators or
generators

The view ‘design patterns as operators’ has been proposed
in Zimmer’s dissertation [8]. Aßmann and Ludwig have
further elaborated on this view, in particular by describing
such operators as static meta-programs [9, 11, 50]. Mean-
while, various mechanisms have been adopted for the
specification or implementation of such meta-programs,
e.g., graph rewriting on a graph model of a program,
metaobject protocols as in CLOS, or advanced macro
mechanisms [10–13, 50]. Alternatively, one can adopt a
generative approach, where program fragments for the
relevant pattern are generated. This approach underlies
some code generators for design patterns [27, 51, 52]. The
metaprogramming approach is more versatile because it
allows one to affect the existing system as opposed to the
generation of a separate, new part of the system. Reflective
designs make the following contributions:

. Design operators operate at runtime.

. Design decisions are traced at runtime.

. Reflective designs are not restricted to implementations
of patterns.
. Design elements expose an explicit life cycle including
reconfiguration.

9.5 Language support for design patterns

In [53], Bosch et al. clearly articulate that the implemen-
tation of design patterns in an ordinary object-oriented
programming language results in problems like lack of
traceability and reusability of the patterns. Very expressive
languages or dedicated language support for design patterns
improve on these problems. One approach to traceability is
to document pattern instances and to automatically check
invariants, as in Hedin’s et al. work [54, 55]. Another
approach to traceability is the modular implementation of
each specific pattern instance, as in Hannemann & Kiczales’
use of static weaving with AspectJ [56]. These authors also
provide some reusable pattern implementations. The follow-
ing approaches all facilitate some forms of reusable pattern
implementations on the basis of advanced expressiveness:

. Bosch’s Layered Object Model (LayOM) [57, 58].

. Ernst’s statically type-safe mixins [59].

. Forbrig, Lämmel’s et al. superimposable class structures
[60, 61].
. Orleans’ incremental programming with extensible
decisions [62].
. Sullivan’s combination of multi-dispatch, higher-order-
ness, and reflection [12].
. Neumann, Zdun’s message filtering [63].

Our approach provides design operators on the basis of
advanced language support for runtime reflection and
aspect-oriented programming with dynamic weaving. As a

IEE Proc.-Softw., Vol. 152, No. 1, February 2005 49

result, implementations of design patterns are not just
reusable, but they can even be deployed at runtime.

10 Concluding remarks

We have described reflective designs – an approach to
impose a design-level discipline on runtime system
adaptations. To this end, we integrated ideas about the
implementation of design patterns, dynamic composition in
aspect-oriented systems, reflection, and meta-programming.
Actively running systems are adapted by the application of
design operators. Each adaptation is explicitly represented
by design elements. This explicit status enables a proper life
cycle for system adaptations. That is, design elements can
be deactivated, reactivated, and they can retire. Design
elements even provide protocols for the reconfiguration, and
for the examination of the performed adaptations. Reflective
designs support run-system adaptations at a higher level of
abstraction, when compared to techniques like basic
reflection. Reflective designs support unanticipated soft-
ware evolution by injecting design patterns solutions
dynamically – as opposed to the conventional approach,
where design patterns are implemented in a system to
anticipate variation points at development time. We have
implemented reflective designs in a class library for
Squeak/Smalltalk. This library demonstrates the feasibility
and the benefits of our approach.

We believe that ReflectiveDesigns and our prototypical
implementation of this approach provide useful input for
further research on runtime system adaptation. Also,
ReflectiveDesigns provide a worked-out instance of the
emerging trend to complement basic code browsing
facilities by design-level views on software systems.

Major directions for future work are the following.
Firstly, the fusion of ReflectiveDesigns and refactoring
transformations should be completed. We note that we have
focused on additive and subtractive adaptations in our work
so far. Secondly, the robustness of ReflectiveDesigns should
be improved by dedicated system analyses and rollback
mechanisms. More generally, our practical approach to
reflective designs needs to be complemented by formal
support. Thirdly, the distance between static and dynamic
design ingredients should be further decreased. At this
moment, we still very much separate development-level
design vs. the application of design operators for system
adaptations.

11 Acknowledgment

We would like to thank the anonymous referees of the
IEE Proceedings – Software; Special issue on “Reusable
Software Libraries” for their substantial input on improving
the structure of the paper. Thanks are due also to Uwe Zdun
for comments on an earlier version of the paper.

12 References

1 Pinto, M., Fuentes, L., Fayad, M., and Troya, J.: ‘Separation of
coordination in a dynamic aspect oriented framework’. Proc. 1st
Int. Conf. on Aspect-Oriented Software Development (AOSD), Twente,
The Netherlands, April 2002, pp. 134–140

2 Akkawi, F., Bader, A., and Elrad, T.: ‘Dynamic weaving for building
reconfigurable software systems’. Proc. OOPSLA Workshop on
Advanced Separation of Concerns in Object-Oriented Systems, 2001

3 Hirschfeld, R., and Kawamura, K.: ‘Dynamic services adaption’. Proc.
24th Int. Conf. on Distributed Computing Systems Workshops - W2:
DARES (ICDCSW), Hachioji, Tokyo, Japan, 23–24 March 2004,
pp. 290–297

4 Hirschfeld, R., Kawamura, K., and Berndt, H.: ‘Dynamic service
adaptation of runtime system extensions’. Lect. Notes Comput. Sci.,
2004, 2928, pp. 227–240

5 Popovici, A., Gross, T., and Alonso, G.: ‘Dynamic weaving for aspect
oriented programming’. Proc. 1st Int. Conf. on Aspect-oriented
Software Development (AOSD), Twente, The Netherlands, April
2002, pp. 141–147

6 Kiczales, G., des Rivieres, J., and Bobrow, D.: ‘The art of the
metaobject protocol’ (MIT Press, Cambridge, MA, USA, 1991)

7 Gamma, E., Helm, R., Johnson, R., and Vlissides, J.: ‘Design patterns:
elements of reusable object-oriented software’ (Addison-Wesley, 1994)

8 Zimmer, W.: ‘Frameworks und Entwurfsmuster’. PhD thesis,
Universität Karlsruhe, 1997

9 Aßmann, U.: ‘AOP with design patterns as meta-programming
operators’. Technical Report 28, Universität Karlsruhe, Oct. 1997

10 Krishnamurthi, S., Erlich, Y.-D., and Felleisen, M.: ‘Expressing
structural properties as language constructs’, Lect. Notes Comput.
Sci., 1999, 1576, pp. 258–272

11 Ludwig, A.: ‘Automatische transformation grober softwaresysteme’.
PhD thesis, Universität Karlsruhe, Dec. 2002

12 Sullivan, G.: ‘Advanced programming language features for executable
design patterns–better patterns through reflection’. Technical Report
AIM-2002-005, MIT Artificial Intelligence Laboratory, 22 March 2002

13 von Dincklage, D.: ‘Making patterns explicit with metaprogramming’,
Lect. Notes Comput. Sci., 2003

14 Brant, J., Foote, B., Johnson, R., and Roberts, D.: ‘Wrappers to the
rescue’, Lect. Notes Comput. Sci., 1998, 1445, pp. 396–417

15 Hirschfeld, R.: ‘AspectS – aspect-oriented programming with Squeak’,
Lect. Notes Comput. Sci., 2003, 2591, pp. 216–232

16 Opdyke, W.: ‘Refactoring object-oriented frameworks’. PhD thesis,
University of Illinois, Urbana-Champaign, 1992

17 Fowler, M.: ‘Refactoring: improving the design of existing code’
(Addison Wesley, 1999)

18 Oreizy, P., Medvidovic, N. and Taylor, R.N.: ‘Architecture-based
runtime software evolution’. Proc. Int. Conf. on Software Engineering,
IEEE Computer Society Press/ACM Press, 1998, pp. 177–186

19 JDrums, ‘Java Distributed Run-time Updating Management System’,
2003, http://www.ida.liu.se/, jengu/jdrums/

20 Evans, H., and Dickman, P.: ‘DRASTIC: a run-time architecture for
evolving, distributed, persistent systems’, Lect. Notes Comput. Sci.,
1997, 1241, pp. 275–243

21 Evans, H., and Dickman, P.: ‘Zones, contracts and absorbing change: an
approach to software evolution’. Proc. Conf. on Object-Oriented
Programming, Systems, Languages and Applications (OOPSLA),
Denver, Colorado, Oct. 1999, SIGPLAN Not. 34, pp. 415–434

22 Lämmel, R.: ‘A semantical approach to method-call interception’. Proc.
1st Int. Conf. on Aspect-Oriented Software Development (AOSD),
Twente, The Netherlands, ACM Press, Apr. 2002, pp. 41–55

23 Lämmel, R., and Stenzel, S.: ‘Semantics-directed implementation
of method-call interception’, IEE Proc., Softw., 2004, 151, (2),
pp. 109–127

24 Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.,
Loingtier, J.-M., and Irwin, J.: ‘Aspect-oriented programming’, Lect.
Notes Comput. Sci., June 1997, 1241, pp. 220–242

25 Elrad, T., Filman, R.E., and Bader, A.: ‘Aspect-oriented programming:
introduction’, Commun. ACM, 2001, 44, (10), pp. 29–32

26 Palsberg, J., and Jay, C.: ‘The essence of the visitor pattern’. Proc. 22nd
IEEE Int. Computer Software and Applications Conf. (COMPSAC),
19–21 Aug. 1998, pp. 9–15

27 Budinsky, F., Finnie, M., Vlissides, J., and Yu, P.: ‘Automatic
code generation from design patterns’, IBM Syst. J., 35, (2), 1996,
pp. 151–171

28 IBM, ‘IBM WebSphere software platform’, 2004, Web portal; http://
www-306.ibm. com/software/info1/websphere/index.jsp

29 Zdun, U.: ‘Pattern language for the design of aspect languages
and aspect composition frameworks’. IEE Proc., Softw., 2004 151,
(2), pp. 67–83

30 Frick, A., Neumann, W., and Zimmermann, W.: ‘Generation of robust
class hierarchies’. Proc. Technology of Object-Oriented Languages and
Systems (TOOLS) Conf., 1997, pp. 282–291

31 Frick, A., Goos, G., Neumann, R., and Zimmermann, W.: ‘Construction
of robust class hierarchies’, Softw.–Pract. Exp., 2000, 30, pp. 481–543,

32 Austermann, M.: ‘JMangler Homgepage’, 2002. http://javalab.cs.
uni-bonn.de/research/jmangler/index.html

33 Keller, R, and Hölzle, U.: ‘Binary component adaptation’, Lect. Notes
Comput. Sci., 1998, 1445, pp. 307–329

34 Chiba, S.: ‘Load-time structural reflection in java’, Lect. Notes Comput.
Sci., 2000, 1850, pp. 313–336

35 Tatsubori, M., Chiba, S., Killijian, M.-O., and Itano, K.: ‘OpenJava:
a class-based macro system for Java’, Lect. Notes Comput. Sci., 2000,
1826

36 Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J.,
and Griswold, W.G.: ‘An overview of AspectJ’. Proc. ECOOP, 2001,
pp. 327–353

37 Pryor, J., and Bastán, N.: ‘A reflective architecture for the support
of aspect-oriented programming in smalltalk’, Lect. Notes Comput. Sci.,
1999, 1743

38 Böllert, K.: ‘On weaving aspects’, Proc. Int. Workshop on Aspect-
Oriented Programming at ECOOP, 1999, pp. 301–302

39 Baker, J., and Hsieh, W.: ‘Runtime aspect weaving through
metaprogramming’. Proc. 1st Int. Conf. on Aspect-Oriented
Software Development (AOSD), Twente, The Netherlands, April
2002, pp. 86–95

40 Popovici, A., Alonso, G., and Gross, T.: ‘Just-in-time aspects: efficient
dynamic weaving for java’. Proc. 2nd Int. Conf. on Aspect-oriented
Software Development, 2003, pp. 100–109

IEE Proc.-Softw., Vol. 152, No. 1, February 200550

41 Brandt, S., and Schmidt, R.W.: ‘The design of a meta-level architecture
for the BETA language’. Proc. META: presented at Workshop on
Advances in Metaobject Protocols and Reflection ECOOP, Aug. 1995

42 Kleinoeder, J., and Golm, M.: ‘MetaJava: An efficient run-time meta
architecture for Java’, in Cabrera, L.-F. and Islam, N. (Eds.): Proc. Int.
Workshop on Object-Orientation in Operating Systems, 1996, pp. 54–61

43 de Oliveira Guimarães, J.: ‘Reflection for statically typed languages’,
Lect. Notes Comput. Sci., 1998, 1445, pp. 440–461

44 Golm, M., and Kleinöder, J.: ‘Jumping to the meta level: behavioral
reflection can be fast and flexible’, Lect. Notes Comput. Sci., 1999,
1616, pp. 22–39

45 Welch, I., and Stroud, R.: ‘From Dalang to Kava – the evolution of a
reflective Java extension’, Lect. Notes Comput. Sci., 1999, 1616,
pp. 2–21

46 Lorenz, D., and Vlissides, J.: ‘Pluggable reflection: decoupling
meta-interface and implementation’. Proc. Int. Conf. on Software
Engineering (ICSE), 1–10 May 2003, pp. 3–13

47 Aksit, M., Wakita, K., Bosch, J., Bergmans, L., and Yonezawa, A.:
‘Abstracting object interactions using composition filters’, Lect. Notes
Comput. Sci., 791, 1994, pp. 152–184

48 Kojarski, S., Lieberherr, K., Lorenz, D., and Hirschfeld, R.: ‘Aspectual
reflection’. Workshop on Software-engineering Properties of
Languages for Aspect Technologies (AOSD), 2003

49 Skotiniotis, T., Lieberherr, K., and Lorenz, D.: ‘Aspect instances and
their interactions’. Workshop on Software-engineering Properties of
Languages for Aspect Technologies (AOSD), 2003

50 Aßmann, U., and Ludwig, A.: ‘Aspect weaving by graph rewriting’,
Lect. Notes Comput. Sci., 1999, 1799, pp. 24–36

51 Florijn, G., Meijers, M., and Winsen, P.: ‘Tool support for object-
oriented patterns’. Lect. Notes Comput. Sci., 1997, 1241, pp. 472–495

52 Eden, A., Yehudai, A., and Gil, J.: ‘Precise specification and automatic
application of design patterns’. Proc. Int. Conf. on Automated Software
Engineering, 1997, pp. 143–152

53 Bosch, J., Hedin, G., and Koskomies, K. (Eds.): Proc. LSDF–
Workshop on Language Support for Design Patterns and
Object-Oriented Frameworks, Research Report 6/97, University of
Karlskrona/Ronneby, 1997

54 Hedin, G.: ‘Language support for design patterns using attribute
extension’. Bosch, J., Hedin, G., and Koskomies, K. (Eds.): Research
Report 6/97, University of Karlskrona/Ronneby

55 Cornils, A., and Hedin, G.: ‘Statically checked documentation with
design patterns’. Proc. Technology of Object-Oriented Languages and
Systems (TOOLS 33), 2000, pp. 419–430

56 Hannemann, J., and Kiczales, G.: ‘Design pattern implementation in
Java and AspectJ’, 37, (11); ACM SIGPLAN Not., New York, ACM
Press, 4–8 Nov. 2002, pp. 161–173

57 Bosch, J.: ‘Design patterns & frameworks: on the issue of language
support’, in Bosch, J., Hedin, G., and Koskomies, K. (Eds.): Research
Report 6/97, University of Karlskrona/Ronneby

58 Bosch, J.: ‘Design patterns as language constructs’, J. Object-Oriented
Program., 1998, 10

59 Ernst, E.: ‘Propagating class and method combination’, Lect. Notes
Comput. Sci., 1999, 1628, pp. 67–91

60 Forbrig, P., and Lämmel, R.: ‘Programming with patterns’. Proc.
TOOLS-USA 2000, 2000

61 S. Bünnig, Forbrig, P., Lämmel, R., and Seemann, N.: ‘A programming
language for design patterns’. Proc. GI-Jahrestagung 1999, Informatik,
Reihe Informatik aktuell, 1999

62 Orleans, D.: ‘Incremental programming with extensible decisions’.
Proc. 1st Int. Conf. on Aspect-oriented Software Development, ACM
Press, 2002, pp. 56–64

63 Neumann, G., and Zdun, U.: ‘Filters as a language support for design
patterns in object-oriented scripting languages’. Proc. COOTS, 5th
Conf. on Object-Oriented Technologies and Systems, San Diego,
California, USA, May 1999

IEE Proc.-Softw., Vol. 152, No. 1, February 2005 51

