
Toward a VR-Native Live Programming Environment

Leonard Geier
leonard.geier@student.hpi.uni-

potsdam.de

Hasso Plattner Institute

Potsdam, Germany

University of Potsdam

Potsdam, Germany

Clemens Tiedt
clemens.tiedt@student.hpi.uni-

potsdam.de

Hasso Plattner Institute

Potsdam, Germany

University of Potsdam

Potsdam, Germany

Tom Beckmann
tom.beckmann@hpi.uni-potsdam.de

Hasso Plattner Institute

Potsdam, Germany

University of Potsdam

Potsdam, Germany

Marcel Taeumel
marcel.taeumel@hpi.uni-

potsdam.de

Hasso Plattner Institute

Potsdam, Germany

University of Potsdam

Potsdam, Germany

Robert Hirschfeld
robert.hirschfeld@uni-potsdam.de

Hasso Plattner Institute

Potsdam, Germany

University of Potsdam

Potsdam, Germany

Abstract

Fast feedback loops between performing code changes and

seeing their outcome help developers to be productive. For

development of virtual reality (VR) applications, developers

use a separate device, forcing them to switch devices when-

ever they want to test their application, thus significantly

increasing the length of the feedback loop.

In this paper, we describe a prototypical development envi-

ronment that allows writing VR applications while inside VR.

Unlike previous work in this area that projected traditional

2D editors into the 3D world, we explore the use of direct

manipulation in a structured editor for the general-purpose

programming language Smalltalk. We present and discuss

insights from a preliminary user study with four participants.

Our findings demonstrate that the concept does work if users

are given prior instructions, especially for smaller features

where direct feedback is valuable, but ergonomics of both

the hardware and our prototype have to be improved before

extended programming sessions are viable.

CCS Concepts: · Software and its engineering → Formal

language definitions; Visual languages; · Human-centered

computing → Virtual reality.

Keywords: virtual reality, programming environment, live

programming, vr-native

PAINT ’22, December 05, 2022, Auckland, New Zealand

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9910-4/22/12.

https://doi.org/10.1145/3563836.3568725

ACM Reference Format:

Leonard Geier, Clemens Tiedt, Tom Beckmann, Marcel Taeumel,

and Robert Hirschfeld. 2022. Toward a VR-Native Live Program-

ming Environment. In Proceedings of the 1st ACM SIGPLAN In-

ternational Workshop on Programming Abstractions and Interac-

tive Notations, Tools, and Environments (PAINT ’22), December 05,

2022, Auckland, New Zealand. ACM, New York, NY, USA, 9 pages.

https://doi.org/10.1145/3563836.3568725

Figure 1. A user of our prototypical VR programming envi-

ronment, the monitor (a) shows the view the user is seeing

through the headset. Four methods (b) are arranged around

the VR application the user is editing, a solar system sim-

ulation partly visible in the form of the yellow sphere (c).

The user is in the process of typing a selector, a popup (d) is

offering corresponding autocompletions to select from.

1 Introduction

Live programming techniques [18] support programmers

by shortening feedback cycles between making a change

and seeing its result. Through reduced context switches,

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

26

http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-9206-8146
https://orcid.org/0000-0003-0589-7526
https://orcid.org/0000-0003-0015-1717
https://orcid.org/0000-0003-0015-1717
https://orcid.org/0000-0003-0015-1717
https://doi.org/10.1145/3563836.3568725
https://doi.org/10.1145/3563836.3568725


PAINT ’22, December 05, 2022, Auckland, New Zealand Geier, Tiedt, Beckmann, Taeumel, Hirschfeld

live programming helps programmers reach a flow state by

eliminatingmuch of the overhead that comes with toolchains

that require compilation or program restarts.

Live programming techniques can also be applied when

developing applications for virtual reality (VR) and thus often

allow changes to become live in under a second. However,

for VR development, programmers no longer use keyboard

andmouse to interact with the resulting program and instead

have to change to a VR headset and VR controllers to test

their changes. While a change in input and output devices

also typically occurs for mobile or console development, the

cost of switching between devices is significantly higher for

VR, as the devices have to be fitted to one’s body each time.

Our goal is thus to remove this cost of switching input and

output devices to support users in reaching a state of flow,

where the result of changes can be observed near-instantly.

In this paper, we contribute a novel means of interact-

ing with a VR-native programming editor in VR as shown

in Figure 1, as well as a preliminary evaluation and discus-

sion of our design decisions through feedback from a user

study. We introduce the term VR-native to refer to interac-

tions that make use of dedicated VR hardware such as the

controllers and headset, rather than traditional keyboards or

a desk setup. More specifically, we investigate the ideas of

structured editing and direct manipulation of the program

syntax tree to allow programmers to edit their VR applica-

tions while they are inside virtual reality. To support a basic

live programming workflow in VR with these constraints,

we identified as the four major building blocks

1. means to display and edit the syntax tree,

2. means to input text,

3. means to browse code, and

4. means to execute the code.

We aim to eventually provide a programming environ-

ment where it is possible for programmers to stay in virtual

reality for most of the development of their VR applications.

Note that for many people, extended sessions in virtual real-

ity may induce a feeling of simulation sickness, especially

if they are not yet used to working in VR. We expect that

with advances in VR hardware in the next years this fac-

tor will decrease. Additionally, the length of development

sessions may be limited as interactions in VR can be compar-

atively exhausting, especially if they require the user to raise

their hands. In the future, this may be remedied by lighter

controllers or hand tracking to an extent.

In the following, we will first discuss the VR-native term

and existing solutions to program in VR (section 2). Next, we

describe our concept for a VR-native development environ-

ment (section 3) and briefly aspects of its implementation

(section 4). We then present insights we gathered from test

runs with users (section 5). We end with a discussion of our

concept (section 6), before concluding the paper (section 7).

Figure 2. Picture of the Valve Index controller. The index

finger is placed at the trigger button. Middle, ring, and little

finger determine the strength of the grip input. Using their

thumb, users can control a touchpad, a thumbstick, and sev-

eral buttons.

2 Programming in VR

In this section, we briefly describe constraints imposed by

the current VR hardware, describe the term VR-native, and

finally relate the term to prior and related work.

2.1 Hardware

Current consumer VR headsets do not differ greatly in the

interactions they imply. The headset tracks the user’s move-

ment and displays a correspondingly transformed view into

a 3D world. Future developments in headsets relevant to our

use case concern primarily comfort in wearing the headset,

most influenced by weight, as well as quality of rendering

through focus and resolution, to allow displaying text in

smaller sizes.

For input, there is one controller for each hand. A picture

is shown in Figure 2. Controllers feature a trigger button

at the index finger, which is typically the main interaction,

corresponding to a left-click using a mouse. The thumb typi-

cally has access to an array of buttons, touchpads, or thumb-

sticks akin to a gamepad. In addition, most controllers have a

"grip" input, which is either on the middle finger (e.g., Oculus

Touch Controller) or detects strength of the user’s grip on

the controller of middle, ring, and small finger separately

(e.g., Valve Index Controller). Some headsets also feature

experimental hand tracking that allows users to perform

gestures with their fingers to provide input to applications

instead of controllers.

2.2 VR-native Programming

As mentioned in section 1, we use the term VR-native to refer

to interactions that

1. make use of dedicated VR hardware, rather than tradi-

tional keyboards or a desk setup, and

2. do not tie users to a specific physical location for their

desired interactions.

27



Toward a VR-Native Live Programming Environment PAINT ’22, December 05, 2022, Auckland, New Zealand

Interpreting this concept in the context of a programming

environment, we want users to be able to perform changes or

investigate problems as and where they happen to support

temporal and spatial immediacy [23] when debugging in VR.

As such, removing the headset or even walking towards a

desk with the headset on may be impractical, as behavior

of code in VR often depends on the physical location of the

user.

This implies that users do not have access to a physical

keyboard, which participants in our study linked to a feeling

of productivity when programming. We thus hypothesize

that interactions that minimize the amount of text that needs

to be entered are more suited to a VR-native setting. These

could take the form of direct-manipulation via drag-and-

drop of program elements, as is common in some structured

editors such as Scratch [19]. As VR controllers are directly

tied to the user’s hands, drag-and-drop feels natural in a

VR environment and is thus also an often used means of

interaction in VR applications [5].

Based on observations by the authors, we hypothesize

that benefits of VR-native programming could include more

immediate feedback for the development of VR applications,

a richer display of both static and dynamic information

through use of the third dimensions, or intuitive direct-

manipulation tools for interacting with code and tools. In

this paper, we focus on providing users with immediacy of

feedback when developing VR applications; investigation

of other potential benefits that may come with a VR-native

programming environment is future work not covered by

this paper.

2.3 Related Work

For our discussion of related work we refine the term VR-

native further to distinguish between native interactions, in-

volving the controllers and headset, and native tools. Native

tools, in this case, refer to tools that make use of 3D space

for user interface elements rather than projecting entire 2D

applications into 3D space and using the controllers or a

mouse as pointers.

Non-native Interactions, Non-native Tools. The sim-

plest means to start programming in virtual reality are desk-

top mirroring tools that project a user’s regular monitor into

a 3D scene [11, 21]. Naturally, the physical size and number

of monitors is not limited in the virtual space; some ap-

proaches also mirror individual applications and allow users

to arrange windows independent of a monitor [21]. Here,

interactions may occur via controllers and a virtual keyboard

but tend to also support input via the user’s physical mouse

and keyboard.

Non-native Interactions, Native Tools. A number of

prototypical programming environments bring program-

ming tools into the VR environment but rely only on text

to represent code [2, 4, 10, 13, 20]. Textual code is typically

shown in a rectangular plane that can be placed freely in

3D space. Again, input is given either through a fully virtual

keyboard to be used with the VR controllers or through a

physical keyboard.

Native Interactions, Native Tools. A set of applications

embraces both native interactions and makes full use of 3D

space. However, the applications tend to be focused on a

specific aspect of software development [9, 14]. In particu-

lar for software visualization and program understanding,

many tools exist that demonstrate benefits compared to their

equivalents on a 2D screen. Most attribute this to the addi-

tional space available to users and the spatial understanding

users form as they interact in 3D space with the domain

objects. Other tools reduce the scope from general-purpose

programming to specific problem spaces that are well-suited

for VR, such as creative coding [22]. These tend to employ

node-and-wire visualizations for their domain-specific lan-

guages.

3 A VR-native Live Programming
Environment

In section 1, we outlined four factors that we consider rele-

vant to allow programming in virtual reality via direct ma-

nipulation in a structured editor to enable VR-native editing.

In the following, we will describe each concern and our ap-

proach to realize the concern in virtual reality.

3.1 Syntax Tree Display and Modification

Our programming environment prototype uses Smalltalk,

hosted on top of the Squeak/Smalltalk [12] live program-

ming system. To display Smalltalk code in our 3D world, we

take the syntax tree as produced by the system’s parser and

define a mapping to labels and rectangular cuboids, which

we will refer to as blocks. Our mapping resembles a mapping

discussed in prior work [1] but adds depth to each level of

nesting such that blocks have volume users can aim at when

grabbing. As Smalltalk is entirely expression-oriented, a map-

ping via the jigsaw-puzzle metaphor as used in Scratch [19]

or Blockly [8], where a distinction between statements and

value expressions is made, is impractical.

The programmer’s central means of interaction in our

design is a small wand, of which they carry one in each

hand. The wand functions as a precise pointing device, with a

diameter which tapers towards 2mm at the far end.Whatever

object the tip of the wand intersects with is considered as

targeted. We tested some different lengths of the wand with

users. The shorter the wand, all the way to no wand at all,

the more users experienced the interactions with blocks as

direct. However, the longer the wand the less movement of

users’ hands and arms was required to target blocks. After

some testing, we opted for a wand of around 20cm in virtual

space, which appeared to provide a compromise between

both concerns.

28



PAINT ’22, December 05, 2022, Auckland, New Zealand Geier, Tiedt, Beckmann, Taeumel, Hirschfeld

Figure 3. At the top, a collection of blocks forming a method

and a single block containing the identifier "speed" are de-

picted. After picking up the identifier block (below), blue

spheres mark possible insert positions in the method.

Users have two means to interact with the program blocks.

First, akin to drag-and-drop in the desktop metaphor, users

can pick up blocks by pointing their wand at them and

pressing and holding the trigger button. These interactions

mimic those used in block-based programming environ-

ments [17, 19]. Once picked up, the selected block and the

blocks it contains are removed from the block it was previ-

ously attached to and are instead attached to the wand. The

user can let go of the blocks in open 3D space to temporarily

set them aside; or, they can target gaps between blocks and

places where a block is missing which we highlight as shown

in Figure 3 to insert blocks.

Second, they can place a text cursor inside a label of a block

by touching a label and pressing the trigger button. As both

interactions, grabbing blocks and placing a cursor, involve

pointing the wand at a block and pressing a button, a means

of distinction between the interactions is needed. Options

we considered include allowing users to switch between a

drag and a text wand; using different buttons for drag and

text; eagerly placing the text cursor and only starting a drag

Figure 4. At a distance (top), the wand allows placing a cur-

sor on text while showing a preview of where it is currently

aimed at. Once the wand touches a block (bottom), the block

is highlighted and may be picked up.

if a threshold of movement is exceeded; and segmenting

the wand in a text and drag section. The latter is the option

we eventually settled on using, as shown in Figure 4: as

the wand nears a text field, we display a faint preview of

where the cursor would be placed if the user would press

the trigger button at the current position. Once the wand

begins intersecting a block, we no longer display a cursor

preview, as pressing trigger would now begin dragging the

block. We found this design to form a good compromise

between accuracy and overhead of mode switching. Once a

text cursor is placed, users can start character input, which

is further described in the next subsection.

3.2 Textual Input

Textual input allows modifying labels in blocks. In addition,

it is also the only way for users to create new blocks. Con-

trarily to block-based editors that usually employ a form

of block palette for creating blocks, users in our prototype

point at an insert position and begin typing the syntactic

29



Toward a VR-Native Live Programming Environment PAINT ’22, December 05, 2022, Auckland, New Zealand

Figure 5. The suggestions menu after the user enters the

string "getCont" into a block.

construct they want to create. As soon as their input is syn-

tactically unambiguous, the construct is created as a block

at the position. Further, automatic transformations similar

to the GrammarCells system for MPS [24] allow users to

enter expression such as 2 + 3 exactly as in a text editor;

the corresponding number and binary operator blocks are

created automatically by the editor.

We consider this last part essential to form amiddleground

between direct manipulation and efficient creation of blocks.

In particular general-purpose programming languages and

their APIs tend to require users to combine a large number

of various language constructs into into larger expressions.

Domain-specific, visual editors, such as Scratch [19] or Un-

real Blueprints [7] instead tend to have few, pre-combined,

and expressive language constructs, such that selection via

a palette becomes feasible.

To aid with input, when entering identifiers or Smalltalk

message names, a suggestions menu offers users to autocom-

plete names. The popup can be freely positioned by the user.

A screenshot can be seen in Figure 5.

We experimented with different means to enter charac-

ters, which, while we were optimizing for drag-and-drop

interactions, tended to be the bottleneck as programmers

wanted to enter new identifiers that the autocompletion did

not have yet. Our first approach, dubbed "airwrite" allowed

users to write simplified letters akin to the PalmOS Graf-

fiti [6] alphabet in the air. As the single stroke letters were

finished, a recognition system would match against their

shape and input the corresponding character. By default, all

letters were entered in lowercase, with the option to type

uppercase letters by pushing the thumbstick forward.

As an alternative, we also added support for a typical

virtual keyboard similar to the one used in mobile phones.

A physical keyboard would not have allowed users to freely

move around the room for editing as intended by our VR-

native concept, which we thus avoided.

Figure 6. The code browser. The layout is similar to the

Squeak/Smalltalk system browser, with code categories on

the left, classes in the center, and instance methods on the

right. A red button is shown next to subclasses of the VR

morph class, allowing users to instantiate the class in the 3D

world.

3.3 Code Browsing

For code browsing, we offer an experience similar to the

Smalltalk class browser, as seen in Figure 6. Three panes offer

the selection of categories, classes of the selected category,

and methods of the selected class. By pointing the wand at

the labels in the panes and pressing the trigger button, users

select the respective element. A selected method opens in

3D space, next to the browser.

Users can reposition methods by dragging their root block.

As this often required users to aim well, we added support

for directly dragging the entire method, independent of the

specific block pointed at, by placing a hand inside the method

and gripping the controller. To preserve readability, a block

reorients itself after being moved such that any contained

text is perfectly horizontal.

3.4 Execution

For execution, we implemented a system comparable to Mor-

phic [16]. Applications are composed of VRmorphs. Opening

an application corresponds to opening the VR morph des-

ignated as the application’s toplevel by the application’s

authors. As of right now, the interactions offered are limited

to the necessary minimum, only allowing users to spawn

and replace a VR morph in the 3D world via buttons in the

code browser that appear next to VR morph subclasses.

Changes to methods are immediately saved if there are no

blocks with unfilled slots in the method. As we are building

on top of the Squeak/Smalltalk live programming system,

changes to methods also immediately become live as they

are saved. When errors occur we display these on a virtual

screen inside the VR environment. In addition, we cease

executing methods of VR morphs that are called every frame

once they throw an error. After the user changes such a faulty

method, it may be executed again, potentially being removed

from execution again right away, if the error persists. In rare

cases, this can lead to unexpected behavior, if other parts

30



PAINT ’22, December 05, 2022, Auckland, New Zealand Geier, Tiedt, Beckmann, Taeumel, Hirschfeld

of the system depend on side effects of the faulty method,

resulting in an inconsistency due to live programming which

users have to resolve by restarting the application they are

developing.

Coupled with the fact that users can position relevant

methods in 3D space directly next to objects of their applica-

tion, saving on changes allows users to observe the effect of

their changes immediately.

4 Implementation

We developed the prototype with Squeak/Smalltalk [12] as a

backend for executing user-defined behavior, allowing us to

leverage its live-coding features. Additionally, we adapted an

existing block-based editor for Squeak/Smalltalk by sending

the current layout of the two-dimensional blocks to the VR

frontend whenever it changed and derived a 3D layout. Any

changes made to the code in VR are synchronized, triggering

a corresponding event in the block-based editor in Squeak.

The VR frontend was implemented with the Godot game

engine [15], with most of the frontend behavior and visu-

alization being written in the engine-specific GDScript lan-

guage. The communication between the Squeak/Smalltalk

and Godot components runs over a Godot plugin that com-

municates with Squeak via its foreign function interface.

The application was developed with and tested on the Valve

Index VR headset.

5 Evaluating The Interaction Design

To evaluate and evolve our interaction design, we settled

on a live code editing scenario that we asked test persons

to perform in our VR programming environment. Our goal

was to validate whether our current prototype allowed users

to complete the given task and to identify shortcoming in

intuitiveness or usability of our design. We thus asked partic-

ipants to think-aloud while using the system. Afterwards, we

performed a semi-structured interview with each participant

on their experience in general and in particular concerning

the four aspects we outlined earlier in subsection 2.2.

Method. We decided to split the experiment into two con-

ditions, despite the small number of participants, to gather as

much information as possible for future experiment designs.

In the first, participants were given no prior instructions on

the editor’s usage such that we could test its intuitiveness.

Due to a technical problem, in the first condition, partic-

ipants were also not able to execute the program. In the

second condition, participants were shown a two minute

walkthrough demonstrating the main interactions. In both

conditions, to ensure participants could still advance, the

instructors set themselves a timer whenever the participant

seemed to be lost. If one minute elapsed without progress in

either condition, the instructors provided hints.

Editing Scenario. The participants were given a simple

VR application which simulates a 3D solar system. It con-

sisted of two Smalltalk classes, one modeling a simple planet

as a 3D sphere, and one modeling a solar system, most no-

tably taking care of instantiating the planets. The program

amounted to 88 lines of code across two classes, and involved

APIs from another three classes, including the relatively large

interface of Godot’s Vector3 class. We asked participants to

perform the first task in the regular Squeak/Smalltalk desk-

top environment: letting the planets rotate around a common

point. Next participants performed a comparable task but

while in VR: changing the planet’s velocities depending on

the velocity of the right controller. Apart from these specifica-

tions, the participants were free to choose the exact behavior

they implemented and were even encouraged to modify it

until they achieved a satisfying result. Changes to the code

persisted between the first and second task. Importantly, par-

ticipants were not given instructions on how the API worked

and thus had to browse code of relevant classes.

Participants. We recruited two participants per condi-

tion, all male graduate students. All participants were in

similar courses as one of the authors, which may introduce

bias [3]. Participants reported between 6 and 13 years of pro-

gramming experience, with 0 to 5 of that in a professional

capacity. Experience with the used API from Godot varied

from no experience to intermediate, while experience with

the host language Squeak/Smalltalk was reported by all par-

ticipants. All participants had tried VR before but only in the

context of games. All participants but one only tried VR a

couple of times. The remaining participant owns and semi-

regularly uses a VR headset. Only one participant had done

development for VR applications before. One participant had

insufficient knowledge of 3D transformations to solve the

first task, such that the instructor had to provide guidance

on API use during the task.

Random assignment resulted in the participants in the first

condition having approximately equal experience. In the sec-

ond condition, one participant was more highly experienced

in comparison, and the other less experienced.

Intuitiveness. In the condition where no instructions

were provided, participants were not able to complete the

task in the VR editor. This was further compounded by tech-

nical difficulties where some parts of code entry malfunc-

tioned. Feedback from participants was correspondingly

negative but both stated that they imagine a more well-

developed version of the editor to be beneficial for VR appli-

cation development.

Feasibility. In the condition with instructions, both par-

ticipants completed the task in the VR editor. Both felt less

productive than when working with the desktop but appre-

ciated the immediate feedback gained for VR application

development. In particular, one participant stated that they

31



Toward a VR-Native Live Programming Environment PAINT ’22, December 05, 2022, Auckland, New Zealand

believe the VR editor to be useful during certain phases of

development where fast feedback is especially helpful.

Threats to Validity. Given the early stage of the proto-

type, some technical issues occurred during all runs, where

all but one were recoverable, but may still have influenced

the participants’ impression independent of the proposed

interaction design. Further, the scope of the tasks was delib-

erately chosen as very small, to allow participants to get used

to both the API and the novel development environment. As

such, it is not clear yet how well our insights would apply in

larger scenarios and a setting where participants had more

time to get used to the interactions.

A study informed by our described preliminary evalua-

tion should significantly increase the number of participants.

Further, the selection of participants should ensure that the

domain is sufficiently well known to not be a factor that

influences the completion of the tasks. Next to qualitative

insights similar to the ones we report here, tracking metrics

such as task completion times and ratings of the users on

aspect of usability would be valuable to remove possible bias

through interpretation in the report of qualitative insights.

Finally, the short time frame participants worked with the

system may have negatively impacted their impression, as

many of the interactions in our prototype have to be per-

formed repeatedly and may thus feel less cumbersome once

participants developed a muscle memory.

6 Discussion

Here, we briefly discuss the proposed interaction design

based on the insights gained from the user study described

in section 5.

6.1 Displaying and Editing the Syntax Tree

The block-based display was unfamiliar to the participants,

which they cited as a reason for their difficulties. Partici-

pants also found that the readability of the code suffered,

mainly due to the bright yellow visualization of possible cur-

sor locations between blocks, which significantly increased

the visual noise. Participants reported that they often knew

exactly what they wanted to do, but had trouble physically

performing the necessary actions.

All of the participants had difficulties positioning the text

cursor, especially at the ends of text strings. Accurately plac-

ing a cursor required very precise motion due to the small

size of the letters; even tiny motions and jitters of the users

hand, compounded by the length of the wand, could shift

the position. Possible solutions include increasing the size

of the text and adding a second way to modify the cursor

position after initial placement, similar to arrow keys on a

keyboard.

In the same vein, aiming at individual blocks with the

tip of the wand proved troublesome. This may be solved

by increasing the thickness of the blocks past the current

value of 3mm. However, one participant found the removal

and insertion interactions very natural when they did work,

although they did not feel the need to use them to complete

the given task.

The participants generally made use of the suggestion

menu. One participant did not notice that suggestions were

provided and even expressed confusion over the purpose

of the suggestion menu; whenever suggestions would be

given, the menu would be outside of the participant’s field

of view or covered by blocks. This highlights the need for a

mechanism that notifies the user of interesting events that

occur out-of-sight.

6.2 Textual Input

We alternated between the virtual keyboard and our "air-

write" system, as described in subsection 3.2. For both, par-

ticipants were successfully using them but mentioned, in

particular for the virtual keyboard, that they miss the effi-

ciency gained from typing with ten fingers.

For airwrite, a large poster placed in the environment de-

picted the mapping between gestures and their correspond-

ing letters. Even though the participants initially needed

time learn this mapping at least in part, they found it intu-

itive and clear to use. Notably, the number of failed input

attempts appeared to drastically decrease with time, even in

the small time span of our experiment. Similarly, a study on

people using the Graffiti system, which our airwrite is based

on, demonstrated that expert users tended to be faster with

the stroke letters than touch typing [6].

For writing new code, where large amounts of text need to

be entered, some participants would have preferred an input

method that supports the speeds they are used toÐeither

touch typing or speech-to-text.

6.3 Code Browsing

Finding code through the browsing interface worked well; all

participants felt that their familiarity with Squeak’s system

browser helped. Apart from general usability improvements

such as highlighting the correct category, the participants

most often desired search functionality. One participant in

particular missed the more advanced browsing tools that

Squeak/Smalltalk provides, such as displaying implementers

and senders of methods.

Multiple participants noted the fact the browser only al-

lowed them to view instance methods of classes, but not

class methods or class definitions. Upon inquiry, the instruc-

tors provided information on inheritance relationships in

the API that helped users advance in the code browsing task.

A future version of the programming environment needs to

support such features.

One participant began arranging multiple methods in 3D

space and mentioned that they believed to profit from the

additional available space.

32



PAINT ’22, December 05, 2022, Auckland, New Zealand Geier, Tiedt, Beckmann, Taeumel, Hirschfeld

6.4 Execution

Live execution was received well and was described as intu-

itive and easy to use. Participants enjoyed seeing the effect of

their changes immediately, which enabled them to quickly

judge whether they were on the right track. One partici-

pant saw particular promise for applications that involve

VR-specific interactions or generally utilize 3D space more

fully.

6.5 General Observations

Due to the prototypical nature of the application, there are

many areas in which usability can and needs to be improved.

Amongst other things, participants commented on annoy-

ances like methods appearing in the same place upon open-

ing and overlapping each other, and a lack of highlights to

indicate the currently selected category and class in the code

browser. One participant found that their workflow was not

fundamentally different than the one in a traditional desktop

development environmentÐthe main difference was just that

most actions felt more awkward.

Even though all participants found that a desktop devel-

opment environment was more mature and suited to their

work, the VR environment was not without merits. All par-

ticipants but one mentioned the large amount of space and

additional dimension for arranging their workspace, with

one stating that they felt that the available space encouraged

them to be more explorative. Live feedback was also repeat-

edly mentioned as a significant advantage. The integrated

nature of the development environment and developed pro-

gram was also well received, reducing and even eliminating

the need to switch between multiple programs.

All participants could imagine using a more mature VR-

native live programming environment to develop VR appli-

cations in order to boost productivity. For general software

development, their stance was generally more reserved, but

not averse.

7 Future Work and Conclusion

As described in section 6, our study participants identified a

number of areas that need improvement. Notably, we con-

sider as most essential in a future iteration to investigate

• fully featured code browsing,

• higher tolerance for error when selecting blocks and

positioning the cursor, and

• a more easily readable representation of code.

In addition, experimenting with different means to provide

textual input, such as speech-to-text or one-handed, portable

keyboards ("keyers"), or alternatively reducing the need for

typing by locating existing identifiers more easily, could be

investigated. Alternatively, different means to express behav-

ior than through Smalltalk code, could be investigated, with

the hopes of finding a notation that by its design requires

less textual input.

In a future user study, we want to both verify that the

proposed interactions are feasible for longer sessions and

more complex tasks. To evaluate whether the idea of em-

ploying direct manipulation of program elements yields a

more natural editing experience in VR, a future user study

may want to compare our approach to the more common

method of projecting a 2D text buffer into the 3D world.

Conclusion. In this paper, we presented a prototypical

live programming environment for VR applications that

leveragesVR-native interactions through direct manipulation

in a structured editor. In a user study with four participants,

we found that participants were able to complete program-

ming tasks in our editor if given prior instructions on the

editor’s use. Participants stated that they missed the produc-

tivity from the desktop setup they are used to, but liked the

additional space gained fromworking in the virtual 3Dworld

and the immediate feedback, as programming environment

and application were both running in VR. As such, we hope

to provide guidance for future designs, based on aspects that

our test users found lacking and others that they validated

as feasible for creating a programming environment in VR.

Acknowledgements

We thankfully acknowledge the financial support of the HPI

Research School on Service-oriented Systems Engineering

(www.hpi.de/en/research/research-schools) and the Hasso

Plattner Design Thinking Research Program (www.hpi.de/

en/dtrp).

References
[1] Tom Beckmann, Stefan Ramson, Patrick Rein, and Robert Hirschfeld.

2020. Visual Design for a Tree-Oriented Projectional Editor. In Confer-

ence Companion of the 4th International Conference on Art, Science, and

Engineering of Programming (Porto, Portugal) (<Programming> ’20).

Association for Computing Machinery, New York, NY, USA, 113ś119.

https://doi.org/10.1145/3397537.3397560

[2] Víctor Stefano Segura Castillo, Leonel Merino, Geoffrey Hecht, and

Alexandre Bergel. 2021. VR-Based User Interactions to Exploit Infinite

Space in Programming Activities. 2021 40th International Conference

of the Chilean Computer Science Society (SCCC) (2021), 1ś5.

[3] Nicola Dell, Vidya Vaidyanathan, Indrani Medhi, Edward Cutrell, and

William Thies. 2012. "Yours is Better!": Participant Response Bias

in HCI. In Proceedings of the SIGCHI Conference on Human Factors

in Computing Systems (Austin, Texas, USA) (CHI ’12). Association

for Computing Machinery, New York, NY, USA, 1321ś1330. https:

//doi.org/10.1145/2207676.2208589

[4] Anthony Elliott, Brian Peiris, and Chris Parnin. 2015. Virtual Reality

in Software Engineering: Affordances, Applications, and Challenges.

In 2015 IEEE/ACM 37th IEEE International Conference on Software Engi-

neering, Vol. 2. 547ś550. https://doi.org/10.1109/ICSE.2015.191

[5] Shaghayegh Esmaeili, Brett Benda, and Eric D. Ragan. 2020. Detection

of Scaled Hand Interactions in Virtual Reality: The Effects of Motion

Direction and Task Complexity. In 2020 IEEE Conference on Virtual

Reality and 3D User Interfaces (VR). 453ś462. https://doi.org/10.1109/

VR46266.2020.00066

[6] Michael D Fleetwood, Michael D Byrne, Peter Centgraf, Karin Dudziak,

Brian Lin, and Dmitryi Mogilev. 2002. An evaluation of text-entry

33

www.hpi.de/en/research/research-schools
www.hpi.de/en/dtrp
www.hpi.de/en/dtrp
https://doi.org/10.1145/3397537.3397560
https://doi.org/10.1145/2207676.2208589
https://doi.org/10.1145/2207676.2208589
https://doi.org/10.1109/ICSE.2015.191
https://doi.org/10.1109/VR46266.2020.00066
https://doi.org/10.1109/VR46266.2020.00066


Toward a VR-Native Live Programming Environment PAINT ’22, December 05, 2022, Auckland, New Zealand

in Palm OSśGraffiti and the virtual keyboard. In Proceedings of the

Human Factors and Ergonomics Society Annual Meeting, Vol. 46. SAGE

Publications Sage CA: Los Angeles, CA, 617ś621.

[7] Epic Games. 2014. Unreal Blueprints. https://docs.unrealengine.

com/5.0/en-US/blueprints-visual-scripting-in-unreal-engine/.

https://docs.unrealengine.com/5.0/en-US/blueprints-visual-

scripting-in-unreal-engine/ [Online, accessed 31 August 2022].

[8] Google. 2020. Blockly. https://developers.google.com/blockly. https:

//developers.google.com/blockly [Online, accessed 29 August 2022].

[9] Akihiro Hori, Masumi Kawakami, and Makoto Ichii. 2019. CodeHouse:

VR Code Visualization Tool. In 2019 Working Conference on Software

Visualization (VISSOFT). 83ś87. https://doi.org/10.1109/VISSOFT.2019.

00018

[10] Luke Iannini. 2016. Rumpus. https://store.steampowered.com/

app/458200/Rumpus/. https://store.steampowered.com/app/458200/

Rumpus/ [Online, accessed 29 August 2022].

[11] Immersed Inc. 2020. Immsersed. https://immersed.com/. https:

//immersed.com/ [Online, accessed 24 August 2022].

[12] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay.

1997. Back to the Future: The Story of Squeak, a Practical Smalltalk

Written in Itself. In Proceedings of the 12th ACM SIGPLAN Conference

on Object-Oriented Programming, Systems, Languages, and Applications

(Atlanta, Georgia, USA) (OOPSLA ’97). Association for Computing

Machinery, New York, NY, USA, 318ś326. https://doi.org/10.1145/

263698.263754

[13] jmiskovic. 2020. inDECK. https://github.com/jmiskovic/indeck. https:

//github.com/jmiskovic/indeck [Online, accessed 29 August 2022].

[14] Pooya Khaloo, MehranMaghoumi, Eugene Taranta, David Bettner, and

Joseph Laviola. 2017. Code Park: A New 3D Code Visualization Tool.

In 2017 IEEE Working Conference on Software Visualization (VISSOFT).

43ś53. https://doi.org/10.1109/VISSOFT.2017.10

[15] Juan Linietsky, Ariel Manzur, and Godot Engine contributors. 2014.

Godot. https://godotengine.org/. https://godotengine.org/ [Online,

accessed 30 August 2022].

[16] JohnH.Maloney and Randall B. Smith. 1995. Directness and Liveness in

the Morphic User Interface Construction Environment. In Proceedings

of the 8th Annual ACM Symposium on User Interface and Software

Technology (Pittsburgh, Pennsylvania, USA) (UIST ’95). Association

for Computing Machinery, New York, NY, USA, 21ś28. https://doi.

org/10.1145/215585.215636

[17] Mauricio Verano Merino, Jurgen J. Vinju, and Mark van den Brand.

2021. DRAFT-What you always wanted to know but could not

find about block-based environments. CoRR abs/2110.03073 (2021).

arXiv:2110.03073 https://arxiv.org/abs/2110.03073

[18] Patrick Rein, Stefan Ramson, Jens Lincke, Robert Hirschfeld, and Tobias

Pape. 2019. Exploratory and Live, Programming and Coding - A

Literature Study Comparing Perspectives on Liveness. The Art, Science,

and Engineering of Programming 3, 1 (2019), 1. https://doi.org/10.

22152/programming-journal.org/2019/3/1

[19] Mitchel Resnick, John Maloney, Andrés Monroy-Hernández, Natalie

Rusk, Evelyn Eastmond, Karen Brennan, Amon Millner, Eric Rosen-

baum, Jay Silver, Brian Silverman, and et al. 2009. Scratch: Pro-

gramming for All. Commun. ACM 52, 11 (Nov. 2009), 60ś67. https:

//doi.org/10.1145/1592761.1592779

[20] Markus Schütz andMichaelWimmer. 2019. Live Coding of a VR Render

Engine in VR. In 2019 IEEE Conference on Virtual Reality and 3D User

Interfaces (VR). 1150ś1151. https://doi.org/10.1109/VR.2019.8797760

[21] SimulaVR. 2018. Simula. https://github.com/SimulaVR/Simula. https:

//github.com/SimulaVR/Simula [Online, accessed 29 August 2022].

[22] Robert Twomey, Tommy Sharkey, Timothy Wood, Amy Eguchi, Mon-

ica Sweet, and Ying Choon Wu. 2022. An Immersive Environment for

Embodied Code. In Extended Abstracts of the 2022 CHI Conference on

Human Factors in Computing Systems (New Orleans, LA, USA) (CHI

EA ’22). Association for Computing Machinery, New York, NY, USA,
Article 197, 4 pages. https://doi.org/10.1145/3491101.3519896

[23] David Ungar, Henry Lieberman, and Christopher Fry. 1997. Debugging

and the Experience of Immediacy. Commun. ACM 40 (04 1997), 38ś43.

https://doi.org/10.1145/248448.248457

[24] Markus Voelter, Tamás Szabó, Sascha Lisson, Bernd Kolb, Sebastian

Erdweg, and Thorsten Berger. 2016. Efficient development of consis-

tent projectional editors using grammar cells. In Proceedings of the

2016 ACM SIGPLAN International Conference on Software Language

Engineering, Amsterdam, The Netherlands, October 31 - November 1,

2016, Tijs van der Storm, Emilie Balland, and Dániel Varró (Eds.). ACM,

28ś40. http://dl.acm.org/citation.cfm?id=2997365

Received 2022-09-01; accepted 2022-10-02

34

https://docs.unrealengine.com/5.0/en-US/blueprints-visual-scripting-in-unreal-engine/
https://docs.unrealengine.com/5.0/en-US/blueprints-visual-scripting-in-unreal-engine/
https://docs.unrealengine.com/5.0/en-US/blueprints-visual-scripting-in-unreal-engine/
https://docs.unrealengine.com/5.0/en-US/blueprints-visual-scripting-in-unreal-engine/
https://developers.google.com/blockly
https://developers.google.com/blockly
https://developers.google.com/blockly
https://doi.org/10.1109/VISSOFT.2019.00018
https://doi.org/10.1109/VISSOFT.2019.00018
https://store.steampowered.com/app/458200/Rumpus/
https://store.steampowered.com/app/458200/Rumpus/
https://store.steampowered.com/app/458200/Rumpus/
https://store.steampowered.com/app/458200/Rumpus/
https://immersed.com/
https://immersed.com/
https://immersed.com/
https://doi.org/10.1145/263698.263754
https://doi.org/10.1145/263698.263754
https://github.com/jmiskovic/indeck
https://github.com/jmiskovic/indeck
https://github.com/jmiskovic/indeck
https://doi.org/10.1109/VISSOFT.2017.10
https://godotengine.org/
https://godotengine.org/
https://doi.org/10.1145/215585.215636
https://doi.org/10.1145/215585.215636
https://arxiv.org/abs/2110.03073
https://arxiv.org/abs/2110.03073
https://doi.org/10.22152/programming-journal.org/2019/3/1
https://doi.org/10.22152/programming-journal.org/2019/3/1
https://doi.org/10.1145/1592761.1592779
https://doi.org/10.1145/1592761.1592779
https://doi.org/10.1109/VR.2019.8797760
https://github.com/SimulaVR/Simula
https://github.com/SimulaVR/Simula
https://github.com/SimulaVR/Simula
https://doi.org/10.1145/3491101.3519896
https://doi.org/10.1145/248448.248457
http://dl.acm.org/citation.cfm?id=2997365

	Abstract
	1 Introduction
	2 Programming in VR
	2.1 Hardware
	2.2 VR-native Programming
	2.3 Related Work

	3 A VR-native Live Programming Environment
	3.1 Syntax Tree Display and Modification
	3.2 Textual Input
	3.3 Code Browsing
	3.4 Execution

	4 Implementation
	5 Evaluating The Interaction Design
	6 Discussion
	6.1 Displaying and Editing the Syntax Tree
	6.2 Textual Input
	6.3 Code Browsing
	6.4 Execution
	6.5 General Observations

	7 Future Work and Conclusion
	References

