
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated
*

O
O
P
S
LA
*

Ar
tifact *

A
E
C

Checks and Balances
Constraint Solving without Surprises in Object-Constraint Programming Languages

Tim Felgentreff1,2, Todd Millstein1,3, Alan Borning1,4, and Robert Hirschfeld1,2

1Communications Design Group (CDG), SAP Labs; Viewpoints Research Institute
2Hasso-Plattner-Institute, Potsdam, Germany; {firstname.lastname}@hpi.de

3University of California, Los Angeles, USA; todd@cs.ucla.edu
4University of Washington, Seattle, USA; borning@cs.washington.edu

Abstract
Object-constraint programming systems integrate declara-
tive constraint solving with imperative, object-oriented lan-
guages, seamlessly providing the power of both paradigms.
However, experience with object-constraint systems has
shown that giving too much power to the constraint solver
opens up the potential for solutions that are surprising and
unintended as well as for complex interactions between con-
straints and imperative code. On the other hand, systems that
overly limit the power of the solver, for example by disal-
lowing constraints involving mutable objects, object identity,
or polymorphic message sends, run the risk of excluding
the core object-oriented features of the language from the
constraint part, and consequently not being able to express
declaratively a large set of interesting problem solutions.

In this paper we present design principles that tame the
power of the constraint solver in object-constraint languages
to avoid difficult corner cases and surprising solutions while
retaining the key features of the approach, including con-
straints over mutable objects, constraints involving object
identity, and constraints on the results of message sends. We
present our solution concretely in the context of the Babels-
berg object-constraint language framework, providing both
an informal description of the resulting language and a for-
mal semantics for a core subset of it. We validate the util-
ity of this semantics with an executable version that allows
us to run test programs and to verify that they provide the
same results as existing implementations of Babelsberg in
JavaScript, Ruby, and Smalltalk.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features — con-
straints, classes and objects

Keywords Constraints, Object-Constraint Programming,
Constraint Imperative Programming, Executable Semantics
Test Suites

1. Introduction
Object-Constraint Programming (OCP) [4] integrates con-
straint satisfaction with common imperative and object-
oriented features. It is motivated by the observation that a
number of key aspects of interactive applications can be con-
cisely specified using constraints, but that other aspects are
more easily specified using standard imperative constructs
(assignment, loops, and so forth). Its goal is to provide both
paradigms in a cleanly integrated fashion, within an object-
oriented framework that respects standard object-oriented
features such as messages, encapsulation, and inheritance.

Experience with OCP systems has shown that natural so-
lutions to a number of important problems involve con-
straints that include mutable objects, object identity, and
message sends. However, such constraints also have the po-
tential for surprising solutions and non-determinism. If a
constraint references a field that does not exist on an ob-
ject, should the solver be allowed to add it? If a constraint
requires two variables to refer to the same object, which
variable should be changed? Can methods be used in con-
straints? If so, can they only be used in the “forward” direc-
tion, to compute a result, or can the solver also use them to
define multi-directional constraints?

In this paper we propose a set of design principles to
answer these questions, along with a set of restrictions on
the behavior of OCP systems that enforce these principles.
The principles and restrictions are as follows:

• Structure preservation: Asserted constraints cannot
change the structure of any objects (meaning the num-
ber and names of their fields). This property is enforced
through a form of dynamic structural typechecking, along

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

OOPSLA’15, October 25–30, 2015, Pittsburgh, PA, USA
ACM. 978-1-4503-3689-5/15/10...
http://dx.doi.org/10.1145/2814270.2814311

767

with implicitly generated extra constraints that imple-
ment frame axioms.

• Identity preservation: Similarly, newly asserted con-
straints cannot change what object a particular variable
or field stores (such changes can only flow from assign-
ments). This property is enforced by requiring constraints
on object identity to already be satisfied at the point
where they are asserted.

• Structural/identity determinism: The structure of objects
as well as the particular objects stored by variables and
fields must be allowed to change through imperative up-
dates, and such changes can in turn cause existing con-
straints to be re-solved. However, the results of constraint
solving are deterministic in terms of the final structures
of objects and the identities of objects stored in each vari-
able/field. This property is enforced through a novel two-
phase solving process that first deterministically solves
identity constraints and then solves the remaining con-
straints in the updated environment and heap.

• Syntactic method rules: A simple syntactic check suf-
fices to determine whether and how a method can be
used within constraints. In short, methods with side ef-
fects (writes other than to local variables) cannot be
used in constraints. Other methods whose bodies sim-
ply compute and return a expression can be used multi-
directionally in constraints — any subset of their vari-
ables can be considered “unknowns” and solved for in
terms of the other variables — provided any methods
called as part of that expression also follow this restric-
tion. The remaining methods can be used just in the “for-
ward” direction, in order to produce a result value which
can participate within constraints.

We have instantiated our approach in the context of Ba-
belsberg, a family of object-constraint languages. Instances
of Babelsberg include Babelsberg/R (a Ruby extension)
[4], Babelsberg/JS (a JavaScript extension) [5], and Babels-
berg/S (a Squeak extension) [10]. However, the ideas are
applicable to object-constraint languages in general. Indeed,
Babelsberg inherits the described issues, as well as its overall
approach, from the earlier Kaleidoscope [8, 16] and Turtle
[11] constraint imperative programming languages, and our
approach is also useful for constraint systems such as Back-
Talk [19], Kaplan [14], and Squander [17] (see Section 5).

We describe our approach informally (Section 2) and
have evaluated it in several ways. First, we have formalized
the approach in a core subset of Babelsberg (Section 3). Sec-
ond, we have developed executable versions of the formal se-
mantics of our core language as well as a full object-oriented
language with polymorphic method dispatch. We use this ex-
ecutable semantics to automatically verify a suite of exam-
ple programs, including ones that illustrate the problems we
address. On top of our executable semantics, we have also
built a framework to generate language test suites from our

suite of example programs, to facilitate automatically testing
Babelsberg implementations for conformance to the seman-
tic rules. Finally, we have created an updated version of the
Babelsberg/JS implementation using our approach, have ver-
ified that it conforms to the formal semantics on the suite of
example programs, and describe our experience porting ex-
isting Babelsberg/JS applications to our new version (Sec-
tion 4).

2. Overview
This section motivates the problems we address with object-
constraint languages and presents our solutions informally,
using Babelsberg to ground the discussion. Babelsberg al-
lows constraints to be interleaved with imperative code and
supports expressive constraints involving mutable objects
and their methods. The language provides a mechanism to
satisfy the constraints stated by the programmer, and to en-
sure that they remain satisfied when variables are re-assigned
imperatively. A core principle of Babelsberg is that, in the
absence of constraints, it should behave like a standard im-
perative language.

In Babelsberg, the details of the underlying solvers are
abstracted so that constraints can be handed to a number of
different solvers, including ones that can then cooperate to
find solutions. For Babelsberg, the solver is used to find a
single best solution — if there are multiple solutions, it is
free to pick any one of them. Providing answers rather than
solutions, i.e., results such as 10 ≤ x ≤ 20 rather than a sin-
gle value for x, and backtracking among multiple answers,
as available in for example constraint logic programming
[13], is not currently a goal.

Instances of Babelsberg are direct extensions of dynamic
object-oriented languages, and include support for such fea-
tures as dynamic typing, object encapsulation, and mes-
sage sends in constraints. Previous work that integrated con-
straints into object-oriented languages did not unify these
constructs for both paradigms, requiring programmers to es-
sentially learn two different sets of abstraction mechanisms.
As a result, modules must implement both object-oriented
and constraint interfaces to be used in both paradigms, and
constraint abstractions relied on direct access to object fields
or special constrainable types, thus limiting the re-usability
of constraint code across objects with similar interfaces, but
different internal structure. OCP languages unify the abstrac-
tion mechanisms by using only object-oriented methods in
both object-oriented code and constraints in a way that re-
spects encapsulation and makes code re-use easier in seman-
tically clean way.

Babelsberg implementations allow any object or value to
occur in a constraint and (given capable solvers) be solved
for—there is no distinction between constrainable variables
and ordinary variables. However, during solving there is a
distinction between objects for which identity is significant
and those for which it is not. For example, a boolean or small

768

integer is a true object in Ruby and Smalltalk, but its identity
is determined purely by its value. Thus, variables referring to
such objects can be re-assigned by the solver. Variables that
refer to objects for which identity is significant, however,
cannot simply be re-assigned by the solver—in Babelsberg,
these may only be re-assigned by the solver to satisfy con-
straints over object identities in response to imperative as-
signments.

We will use Babelsberg/JS for the examples that
follow (i.e., JavaScript syntax). Babelsberg/JS augments
JavaScript with statements of the form always: { e } and
once: { e } to declare constraints, where e is an ordinary
JavaScript expression. In Babelsberg/JS, this expression is
evaluated in a special interpreter mode to convert it dynami-
cally into one or more constraints that can be handed to the
solver and, when solved, will make the JavaScript expression
return true. Both always and once constraints are solved
immediately. An always constraint is required to hold for
the rest of the execution; Babelsberg/JS therefore re-creates
and re-solves the constraint as part of the execution of each
subsequent statement if it may have become invalidated,
which can happen whenever a variable or field is assigned. In
contrast, a once constraint is solved once and then immedi-
ately retracted. Semantically, always constraints persist for
the rest of the execution, but the practical implementations
garbage collect constraints if all variables that they transi-
tively refer to are no longer accessible.

As a simple example, consider a bank account applica-
tion in which we want to prevent changes that would make
the account balance drop below a certain threshold. Addi-
tionally, we want to track the daily interest, but not allow
it to rise above 10 euros. Below is part of a Babelsberg/JS
implementation of such an application.

Listing 1.
1 var acc = new Account(), plan = new SavingsPlan();
2 always: { acc.balance >= plan.minimumBalance()? }
3 always: { priority: "medium"
4 plan.dailyInterest == (acc.balance? * 0.01) / 365.0 }
5 always: { plan.dailyInterest <= 10 }

The constraint on line 2 ensures that acc.balance re-
mains above the minimum balance required by the plan.
Note that the plan’s minimum balance is the result of a mes-
sage send—it does not matter if it is calculated or a field
access. If the constraint is already satisfied at that point,
then nothing need be done; otherwise the solver will mod-
ify the values of variables and their fields in order to satisfy
the constraint. Note also that these variables and fields are
not special “constraint variables”—any variable can appear
and potentially be solved for in a constraint. The read-only
annotation on plan.minimumBalance(), indicated by the
question mark, prevents the solver from changing the plan or
its minimum balance to satisfy the constraint. The theory of
read-only annotations applies only to single variables [2, 6]

and we make the same restriction in our semantics below, but
in practical languages we also permit read-only annotations
on expressions. The implementations do a simple rewrite to
convert a read-only expression to a read-only variable by in-
troducing a fresh variable as needed [6].

In this constraint, the read-only annotation means that
only acc.balance is available for the solver to modify. Be-
cause this is an always constraint, it will be re-checked, and
if necessary re-solved, as part of executing each subsequent
statement as well.1 It is of course possible for the given con-
straints to be unsatisfiable. For example, if there is a required
constraint that the minimum balance is 100, but a subsequent
constraint requires that acc.balance be 50, or if that value
is directly assigned to acc.balance, an exception will be
generated.

Line 3 computes the daily interest and again uses a
read-only annotation, now so that acc.balance cannot be
changed to satisfy this constraint. By default, constraints
have a priority of required, but Babelsberg/JS supports
soft constraints as well. On line 3, the constraint priority
is medium, which tells the system that it should satisfy the
constraint if possible, but it is no error not to do so. Specif-
ically, if the daily interest were to rise above 10, the system
would choose to satisfy the constraint on line 4 but leave
the constraint on line 3 unsatisfied. There are a number of
alternatives for the definition of what constitutes an optimal
solution given competing soft constraints, each with their
own advantages and disadvantages [2, 6]. In the work here,
we encode that definition in the choice of constraint solver,
rather than making it a separate part of the semantic rules.

The rest of this section describes the problems that can
arise with such an expressive object-constraint language, our
design principles for addressing these problems, and our
rules for enforcing the principles.

2.1 Structure Preservation
Consider again the bank account example shown above. The
programmer expects the constraints to possibly affect the ac-
count’s balance as well as the daily interest. However, in
the absence of other restrictions, we discovered that Babels-
berg, as well as earlier systems that integrate constraints and
objects, would sometimes find unintuitive solutions that the
programmer likely did not even consider, let alone intend.

Specifically, suppose the object acc has no balance
field. In earlier versions of Babelsberg, the solver could
silently invent such a field to satisfy the constraint on line
2, and that field would be added to the object when the so-
lution is used to update the heap—after all, we did ask in
our constraint that such a field exist and be equal to the
minimum balance. (Similarly, if we created a constraint that
the account be equal to an object with only a balance field

1 The constraint is active from the point at which it is created and onwards,
but does not retroactively apply prior to the execution. In a graphical
application, for example, the user may have already seen previous results.

769

and if the account previously had additional fields, the su-
perfluous fields could be removed.) While one might argue
that such behavior is desirable in these cases, it is a slip-
pery slope. For example, consider a constraint of the form
p.x > 0 || p.y > 0 on a point p. There is inherent non-
determinism here — the solver can choose which field to
update if the constraint does not hold. But if p lacks an x
field should it be invented? If p lacks both fields which one
should be invented?

To avoid confusion, we employ a principle of structure
preservation: the solution to a newly asserted constraint will
never change the structure of any objects, where we take
structure to include the names and number of an object’s
fields (and thus, implicitly also its size), recursively. We en-
force this principle by employing a form of structural type-
checking at run time, just before sending constraints to the
solver. Our checks ensure that all structural requirements of
the given constraints are already satisfied in the current en-
vironment and heap. For example, before solving the con-
straint added in line 2 of our bank account example, Babels-
berg will check that acc already has a balance field and
will raise an exception if that is not the case.

2.2 Identity Preservation
Another issue in the design of an object-constraint language
is the interaction between constraints and object identity.
Object identity plays an essential role when using an object-
oriented language to model aspects of the real world and
so, in a language that integrates constraints with object-
oriented features, we need to resolve the tension between
these fundamental features [15].

Surprisingly, this tension arises even in the simple bank
account example shown earlier. Consider the constraint on
acc.balance in line 2. While the programmer expects the
value of the account’s balance field to be updated as nec-
essary to satisfy the constraint, earlier versions of Babels-
berg and prior object-constraint languages could also choose
to simply change acc to point to another object whose
balance field satisfies the constraint!

Additional complications arise in the presence of explicit
constraints on object identity. Such constraints are useful
for specifying real-world requirements that two variables de-
note the same actual object and to describe cyclic structures.
Kaleidoscope had many of the same goals as Babelsberg, as
well as some of its features (including explicit constraints
on object identity), but did not have the rules presented here
to tame the power of the constraint solver. Experience with
that language in particular demonstrated that identity con-
straints can have non-obvious consequences in an impera-
tive language. As an example, suppose we add the following
constraint after Listing 1:

Listing 2.
always: { acc === acc2 }

This identity constraint requires two variables to point to the
same object. Here it is not clear whether the solution will
require them both to point to the object stored in acc or
that stored in acc2. Further, if these objects have different
structures, this could lead to nondeterministic failures in
subsequent structural checks. Finally, the solver could also
satisfy the identity constraint by assigning both variables to
yet a third object2. Adding a read-only annotation on one of
the variables does not suffice, because that would prevent the
system from re-satisfying the constraint if we later assign to
the variable that is not read-only.

To address these problems, we employ a principle of
identity preservation: newly asserted constraints cannot
change which object a particular variable or field stores. To
enforce this principle, we require all identity constraints to
be already satisfied at the time they are asserted. Only during
later assignments will the system re-satisfy the constraint de-
terministically. In our example above, the programmer must
explicitly resolve the nondeterminism, for example by as-
signing acc2 to point to the value of acc, before asserting
the identity constraint. If this check fails we treat the con-
straint as unsatisfiable. While this approach places a bit more
burden on the programmer, we believe that the programmer
effort is more than made up for by the strong guarantee pro-
vided by the language.

2.3 Structural/Identity Determinism
Of course, imperative programs do need to sometimes up-
date the structures of objects and change which objects are
stored in particular variables and fields. In Babelsberg we
must therefore allow such updates. The challenge, then, is
to provide this expressiveness while at the same time avoid-
ing the kinds of surprising behaviors described earlier when
attempting to re-establish violated constraints.

To that end, we allow arbitrary updates to objects and
variables through ordinary assignment but impose a princi-
ple of structural and identity determinism: all solutions to
the violated constraints must agree on the structures of all
objects and the identities stored in all variables and fields.
The key observation is that changes to structure and identity
can only occur through an assignment statement, and the in-
herent directionality of an assignment ensures a determinis-
tic “flow” to other variables in order to re-establish violated
constraints.

However, making this approach work requires a few new
restrictions, particularly with respect to identity constraints.
Specifically, Babelsberg requires identity constraints to be
asserted on their own, separate from other constraints, and it
forbids such constraints from appearing within disjunctions
or negations. To see why this approach ensures determinism

2 One could also imagine an isDistinct identity constraint to express that two
variables should not refer to the same object—however, this would almost
always lead to non-determinism, as the solver would be free to pick any
object to re-satisfy the constraint if one of the variables were assigned to be
identical to the other.

770

consider again the constraint in Listing 2 and suppose that
acc2 is subsequently re-assigned to point to some object
o. Since that re-assignment requires acc2 to point to o, the
only way to re-satisfy the existing identity constraint is to
re-assign acc to point to o as well.

Finally, an assignment statement may cause violations in
both identity constraints as well as ordinary “value” con-
straints. As described in earlier subsections, constraint solv-
ing is normally not allowed to modify the structure of ob-
jects or change the objects stored in variables and fields.
To re-establish all constraints in a manner that adheres to
our restrictions and is understandable for programmers, we
therefore introduce a two-phase approach to constraint solv-
ing as part of an assignment statement. In the first phase,
all identity constraints are re-established as described above.
This phase may update the structure of objects and change
which objects are stored in particular variables and fields but
will do so deterministically. In the second phase, all other
constraints are solved in the context of this updated environ-
ment and heap, using the restrictions described earlier. Here
we also include a notion from previous system [8] that the
solver should always pick a solution that is “close” to the
current state of the system. To that end, we implicitly add
a low priority “stay” constraint to each variable, so that its
value only changes if required by some higher-priority con-
straint.

As an example for our two-phase solving, suppose
we have the constraints from Listing 1 plus the iden-
tity constraint in Listing 2, and we now assign an object
{credit: 10} to acc2. In the first phase, we re-satisfy
the identity constraints by propagating this assignment to
acc. Now both again point to the same object. In the sec-
ond phase, we attempt to typecheck and re-satisfy the value
constraints on acc. However, these now attempt to con-
strain the balance field on an object with only a credit
field—the structural typecheck thus fails, and we cannot al-
low the assignment as we could not re-satisfy the value con-
straints with the new value. The practical implementations
of Babelsberg undo the effects of the first phase and gener-
ate a runtime exception, leaving all variables and fields un-
changed. In the semantics, we say that the execution stops in
this case.

2.4 Invoking Methods in Constraints
Just as procedural abstraction is very useful in imperative
code, object-constraint languages require a way to name and
parameterize constraints. Prior languages such as Kaleido-
scope and Turtle accomplish this by introducing a new ab-
straction that is the analogue of procedures for constraints.
This approach is semantically simple but makes the language
larger, requires programmers to carefully separate their im-
perative and declarative code, and requires duplication for
functionality that can be used both imperatively and declar-
atively.

Babelsberg instead unifies these abstractions, allowing
constraints to invoke ordinary methods directly. This ap-
proach simplifies programming by avoiding the problems
described above. However, it also creates new semantic
challenges. The Babelsberg implementation must be able
to translate method bodies into constraints. However, not all
imperative code can be translated to declarative constraints.
In earlier versions of Babelsberg, the line between methods
that could successfully be called from constraints and those
that could not was not precise, and evolved alongside the
implementations in an ad hoc manner.

In this work we provide a simple set of syntactic criteria
that allows programmers to easily understand whether and
how a given method can be called from a constraint. In the
rest of this section we discuss several semantic issues and
how they are addressed. The resulting rules are more restric-
tive than those for the prior Babelsberg implementations, but
they still allow a wide range of useful programs while re-
maining easily understood.

2.4.1 Dynamic Dispatch
An immediate concern with allowing methods to be invoked
in constraints is the fact that methods are dynamically dis-
patched: different method implementations can be invoked
at a call site, depending on the run-time class of the re-
ceiver object. Thanks to our restrictions on object identi-
ties along with the two-phase constraint-solving process de-
scribed earlier, this turns out to be a non-issue. Specifically,
after the first phase of constraint solving, all object identi-
ties are fixed. At that point, the dynamic dispatch can be
performed in order to identify the appropriate method im-
plementation, which can then be translated to a constraint as
part of the second, “value” phase of constraint solving. The
only new restriction we require to make this approach work
is that methods called from constraints cannot include iden-
tity constraints, as these would have needed to be solved in
the first phase.

2.4.2 Side Effects
Methods with side effects cannot safely be used in con-
straints. The presence of such side effects could cause the
program’s behavior to be dependent on the number of times
that a constraint is checked, making programs very difficult
to reason about. Side effects in constraints could also cause
other constraints to become violated, leading to semantic
challenges such as the potential for the constraint solving
process to diverge, or could lead to situations where a con-
straint is seemingly satisfied, but would be unsatisfied at a
later time without any of the participating variables chang-
ing (e.g., when reading from a file that was deleted outside
the program).

We use a simple syntactic rule to ensure that methods
used in constraints have no side effects. Such methods can
only write to local variables and can only invoke other side-
effect-free methods. This rule is checked dynamically before

771

constraint solving by executing the constraint expression and
detecting invalid operations.

However, we would also like to allow the creation of new
objects in constraint expressions. Doing so is problematic
if the identity of the newly created object could be signifi-
cant, for example via reflection or explicit identity tests, yet
we found numerous useful examples that involved creating
simple objects such as points and rectangles in constraint ex-
pressions. To resolve this issue, we add the concept of value
classes to Babelsberg and allow instances of these classes to
be created in constraints. Unlike regular objects, instances of
value classes are immutable after creation, and they do not
have object identity. However, value classes are more than
simple records, since they support methods and inheritance.
A number of existing languages support or have proposals
for forms of value classes, for example Scala3 and Java4.

2.4.3 One-Way and Multi-Way Constraints
An important advantage of constraints is that in general they
are multi-way: any subset of their variables can be consid-
ered “unknowns” and solved for in terms of the other vari-
ables. In contrast, imperative code typically computes from
a pre-determined set of inputs to a pre-determined output.
In general, imperative code is not “reversible” for many
reasons, including complex arithmetic, recursion, and un-
bounded loops. To correctly look up methods in constraints,
as described in Section 2.4.1, we also need to determine the
identities of variables encountered in value constraints. For
chained method calls, this includes determining the identity
of method return values, which, in the presence of branch-
ing and loops, would entail considering the possible control
flow paths. Prior versions of Babelsberg used a kind of best-
effort strategy, which made it difficult to know what would
work when. This presented debugging challenges, because
if the system rejected a constraint it was not always clear
whether this was because it was incorrect or whether the
system was unable transform control flow structures to de-
termine the identities of the returned objects.

Our current rules instead rely on simple syntactic proper-
ties of the methods called in a constraint. If a method con-
sists solely of a single return statement, then it can be used
in a constraint in a multi-way manner, provided any meth-
ods called as part of that statement (recursively) themselves
follow this restriction as well. While seemingly restrictive,
this approach supports a spectrum of useful programming
idioms. For example, suppose that we want to express the
requirement that a window in a graphical application stay
centered on the mouse position, which we keep in a variable
mousePosition. This constraint can then be defined as fol-
lows:

3 http://docs.scala-lang.org/sips/completed/
value-classes.html
4 http://openjdk.java.net/jeps/169

Listing 3.
1 var window = new Window(0,0,100,100),
2 mousePosition = $world.hand().getPosition();
3 always: { window.getCenter().equals(mousePosition) }

After running this code, the system will ensure that the
window is centered on the value of mousePosition. If the
variable is updated (e.g., through a mechanism that fires
when the cursor moves) the system will adjust other parts
of the window to keep the center at the desired position. If
the window moves by some other means, the system changes
the mousePosition variable to follow. If an adjustment is
not possible, the system prevents the interaction.

In this example, it does not matter if getCenter is just
an accessor or a calculated property; in either case, Babels-
berg traces into the method and creates the correct relations
between the actual parts of the window and the point. For
example, the following implementation of getCenter is al-
lowed by our rules:

Listing 4.
1 function getCenter() {
2 return Point(
3 this.topLeft.x + this.width / 2,
4 this.topLeft.y + this.height / 2
5);
6 }

Because the method consists of only a return statement,
Babelsberg can solve the constraint involving this method
multi-directionally; that is, it can modify any or all of the
topLeft, width, and height fields of the window in or-
der to satisfy the constraint whenever the mousePosition
changes.

A method m that is used in a multi-way constraint in the
above manner is ultimately exploded into a set of primi-
tive constraints that correspond to the primitive operations
performed by m and its callees, which are then handed to
the solver. However, if the resulting constraints are not sup-
ported by the solver, then even though we hand it to the
solver as a multi-way constraint, the solver may be unable
to solve for all variables that occur in the constraint or fail to
solve the constraint altogether. For example, a local propa-
gation solver such as DeltaBlue can handle the integer addi-
tion constraints resulting from the getCenter example but
cannot handle a method that involves integer inequalities.
(Given a constraint x ≤ y, a local propagation solver cannot
find a unique value for y given a value for x.) On the other
hand, a solver that can accommodate both linear equalities
and inequalities would be able to solve such a set of con-
straints. Such possible limitations of the solver are a sepa-
rate issue from the rules given here. For example, given a
constraint that invokes a method encrypt on a public key
object, presumably no practical solver will be able to solve
this in a multi-way manner in reasonable time—but if such

772

http://docs.scala-lang.org/sips/completed/value-classes.html
http://docs.scala-lang.org/sips/completed/value-classes.html
http://openjdk.java.net/jeps/169

a solver were ever developed, our rules would allow it to be
used.

Given a side-effect-free method, if that method has
branches or multiple statements rather than a single return
statement, then we do not support using it in a multi-way
manner. (This will prevent the system from reversing most
encrypt methods, since they usually involve branches and
loops even though they are side-effect-free.) The method
can still be invoked within a constraint, but can only be used
in the “forward” direction. That is, the method will simply
be executed (rather than being exploded into further con-
straints), and its result value can be used to constrain other
variables in the constraint. This may be useful, for example,
if we just want to track the center of the window in a vari-
able to display on the screen, and not allow changes to the
variable that would affect the window. Using methods in this
way is safe as long as there are no cyclic dependencies (e.g.,
the result of a method call constraining one of its inputs),
which is checked during translation to the solver.

It would be possible to make our rules somewhat more
lenient; for example, it would be possible to translate the
following version of getCenter so that it can be used in a
multi-way manner.

Listing 5.
1 function getCenter() {
2 var center = // ... previous code
3 if (this.isScaled) {
4 center.x = center.x / this.scale;
5 center.y = center.y / this.scale;
6 }
7 return center;
8 }

However, in practice we have found that as methods be-
come more complex than a single expression, translating
them can lead to surprising solutions. Even in this simple
example, it is difficult to judge if the solver might also mod-
ify the isScaled or scale fields to satisfy the constraint,
and what effects that might have. Further, as the methods
become more complex, even if they are still side-effect-free,
it quickly becomes impractical (and in the limit impossible)
to reverse them. Our experience to date thus suggests that
the current rule, while restrictive, provides a useful balance
between clarity and power.

3. Formalism
This section presents a core language that we call Babels-
berg/UID, which we use to formalize the key aspects of our
approach. Specifically, the goals of Babelsberg/UID are to
elucidate the relationship between imperative code and con-
straints, and to make precise our rules for taming this rela-
tionship as described in Sections 2.1-2.3 above. The formal-
ism lacks methods and therefore does not account for our
rules on method calls as discussed in Section 2.4. It also

omits many other features that would be inherited from a
host language, such exception handling and I/O.

In addition to an environment and heap, the semantics
also maintains a current set of constraints, which arise from
always statements. When a new constraint is asserted via
once or always, that constraint along with the current set
of constraints is passed to the constraint solver. If the solver
finds a solution, it returns a new environment and heap to re-
place the existing ones; otherwise execution halts. In practi-
cal languages, a run-time exception would be generated and
the heap and environment remain unchanged. An assignment
statement is also modeled as a constraint: we evaluate the
right-hand side and then create a constraint that the resulting
value and the left-hand side be identical. This constraint is
then used as part of constraint solving along with the current
set of constraints to produce the updated environment and
heap.

3.1 Syntax
We use the following syntax for Babelsberg/UID:

Statement s ::= skip | s;s
| L := e | x := new o
| always C | once C
| if e then s else s
| while e do s

Constraint C ::= ρ e | C ∧ C
Expression e ::= v | L | e ⊕ e | L==L
Object Literal o ::= {l1:e1,. . .,ln:en}
L-Value L ::= x | L.l
Constant c ::= true | false | nil

| base type constants
Variable x ::= variable names
Label l ::= record label names
Reference r ::= references to heap records
Value v ::= c | r

Metavariable c ranges over the nil value, booleans, and
primitive type constants. A finite set of operators on primi-
tives is ranged over by ⊕. We assume ⊕ includes at least an
equality operator = for each primitive type and an operator
∧ for boolean conjunction. The operator == tests for iden-
tity — for primitive values this behaves the same as =. The
symbol ρ ranges over constraint priorities and is assumed to
include a bottom element weak and a top element required.
The syntax requires the priority to be explicit; for simplicity
we sometimes omit it in the rules and assume a priority of
required.

3.2 Operational Semantics
The semantics includes an environment E and a heap H. The
former is a function that maps variable names to values,
while the latter is a function that maps mutable references
to “objects” of the form {l1:v1,. . .,ln:vn}. When convenient,
we also treat E and H as sets of pairs ({(x,v),...} and
{(r,o),...}, respectively). The currently active value con-

773

Expression Evaluation
E;H` e⇓ v Expression e evaluates to value v in the context of environment E and heap H

Typechecking
E;H`e : T Expression e has type T in the context of environment E and heap H

E;H` C Constraint C is well formed in the context of environment E and heap H
Constraint Solving

E;H |= C Environment E and heap H represent a solution to constraint C
Statement Evaluation
<E|H|C|I|s>−→ <E′|H′|C′|I′> Execution starting from configuration <E|H|C|I|s> ends in the state <E′|H′|C′|I′>
Helper Rules

solve(E, H, C, ρ) = E′;H′ Solving the constraint C by translating it into a form suitable for the solver and adding
stay constraints on E and H yields new environment E′ and new heap H′

E;H` C C′ Translating constraint C into a form suitable for the solver yields constraint C′

stay(E, ρ) = C Constraint C is a conjunction of stay constraints on variables in environment E
stay(H, ρ) = C Constraint C is a conjunction of stay constraints on objects in heap H

stay(x=c, ρ) = C Constraint C is a weak stay constraint for x to equal c
stay(x=r, ρ) = C Constraint C is a stay constraint with priority ρ for x to equal r
stay(r=o, ρ) = C Constraint C is a required stay constraint for reference r to refer to the object o

stayPrefix(E, H, I) = C Constraint C is a conjunction of required equalities to ensure both sides of the identity
constraint can only be updated deterministically

stayPrefix(E, H, L) = C Constraint C is a conjunction of required equalities to ensure that all but the last part in
L cannot be changed

Table 1. Judgments and Intuitions of Semantic Rules

straints are kept as a compound constraint C; identity con-
straints are kept as a compound constraint referred to as I.
Table 1 summarizes the judgments in our semantics and their
intuitions. We give the rules to these judgments below.

Expression Evaluation The rules for evaluation are stan-
dard, but we show them for completeness. For each operator
⊕ in the language we assume the existence of a correspond-
ing semantic function denoted J⊕K.

E;H` c⇓ c (E-CONST)

E;H` r⇓ r (E-REF)

E(x) = v
E;H` x⇓ v

(E-VAR)

E;H` L⇓ r H(r) = {l1:v1,. . .,ln:vn} 1 ≤ i ≤ n
E;H` L.li ⇓ vi

(E-FIELD)

E;H` e1 ⇓ v1 E;H` e2 ⇓ v2 v1 J⊕K v2 = v
E;H` e1 ⊕ e2 ⇓ v

(E-OP)

E;H` L1 ⇓ v E;H` L2 ⇓ v
E;H` L1 == L2 ⇓ true

(E-IDENTITYTRUE)

E;H` L1 ⇓ v1 E;H` L2 ⇓ v2 v1 6= v2
E;H` L1 == L2 ⇓ false

(E-IDENTITYFALSE)

Typechecking We use a notion of typechecking to prevent
undesirable non-determinism in constraints. Specifically, we
want constraint solving to preserve the structure of the val-
ues of variables, changing only the underlying primitive data
as part of a solution, in support of the goals listed in Sec-
tions 2.1 through 2.3. We formalize our notion of structure
through a simple syntax of types:

Type T ::= PrimitiveType | {l1:T1,. . .,ln:Tn}

Our typechecking rules check expressions dynamically
just before constraint solving, so we typecheck in the context
of a run-time environment. Otherwise the rules are relatively
standard. In a statically typed language these checks could
instead be performed in a more traditional manner (using
the static types) at compile time. Note that we do not include
type rules for identities. This ensures that constraints involv-
ing them do not typecheck, so identity checks cannot occur
in ordinary constraints.

E;H`c : PrimitiveType (T-CONST)

H(r)={l1:v1,. . .,ln:vn}
E;H`v1 : T1 · · · E;H`vn : Tn
E;H`r : {l1:T1,. . .,ln:Tn}

(T-REF)

E(x) = v E;H`v : T
E;H`x : T

(T-VAR)

774

E;H`L : {l1:T1,. . .,ln:Tn} 1 ≤ i ≤ n
E;H`L.li : Ti

(T-FIELD)

E;H`e1 : PrimitiveType E;H`e2 : PrimitiveType
E;H`e1 ⊕ e2 : PrimitiveType

(T-OP)

The following two rules define a constraint to be well-
formed if it has a type.

E;H`e : T
E;H` ρ e

(T-PRIORITY)

E;H` C1 E;H` C2
E;H` C1 ∧ C2

(T-CONJUNCTION)

Constraint Solving This judgment represents a call to the
constraint solver, which we treat as a black box. We assume
that the solver supports our primitive types, records, and un-
interpreted functions, as well as hard and soft constraints [2].
The proposition E;H |= C denotes that environment E and
heap H are an optimal solution to the constraint C, according
to the solver’s semantics. If there are multiple optimal solu-
tions, the solver is free to pick any one of them. (As noted
previously, we encode the precise definition of what consti-
tutes an optimal solution in the choice of constraint solver,
rather than making it a separate part of the semantic rules.)

Statement Evaluation A “configuration” defining the state
of an execution includes a concrete context, represented by
the environment and heap, a symbolic context, represented
by the value and identity constraint stores, and a statement to
be executed. The environment, heap, and statement are stan-
dard, while the constraint stores are not part of the state of a
computation in most languages. Intuitively, the environment
and heap come from constraint solving during the evaluation
of the immediately preceding statement, and the constraints
C and I record the (respectively, value and identity) always
constraints that have been declared so far during execution.
Note that our execution implicitly gets stuck if the solver
cannot produce a model.

The first two rules below provide the semantics of value
constraints. We require the constraint C0 to typecheck, which
ensures that the structures of objects cannot change as a re-
sult of constraint solving. This also ensures that the given
constraint contains no identity tests, which are handled sep-
arately.

E;H` C0 solve(E, H, C∧ C0, required) = E′;H′

<E|H|C|I|once C0>−→ <E′|H′|C|I>
(S-ONCE)

<E|H|C|I|once C0>−→ <E′|H′|C|I> C′ = C ∧ C0
<E|H|C|I|always C0>−→ <E′|H′|C′|I>

(S-ALWAYS)

Rule S-ONCE employs a helper judgment to perform con-
straint solving, which is used both for solving value and
identity constraints and is defined by rule SOLVE in Figure 1.
The rule generates “stay” constraints on the environment and
heap, translates constraints to the language of the solver, and
solves the constraints. The generation of stay constraints is
defined by the remaining rules in the figure. Each variable
and field has a stay constraint to keep it at its current value.
Rule STAYCONST uses a weak priority to allow a primi-
tive to be changed by the solver. Rule STAYOBJECT uses
a required constraint on the structure of each object, to en-
sure that the solver will not invent new fields. In that rule we
use H as an uninterpreted function to properly model the heap
as a set of constraints. All other stay constraints have the
given priority ρ. In the context of S-ONCE ρ is required,
which prevents the structure of objects and the pointer re-
lation among object references from changing when value
constraints are solved.

Finally, the judgment E;H` C C′ translates constraints
into a form suitable for the solver. Specifically, each occur-
rence of an expression of the form L.l, where L refers to a
heap reference r, is translated into H(L).l (recursively, as
required), and each identity operator == is translated to the =
operator. These rules are straightforward and are omitted.

The next two rules describe the semantics of identity con-
straints. The rules simply require that an identity constraint
is already satisfied when it is asserted; hence the environ-
ment and heap are unchanged.

E;H` L0 ⇓ v E;H` L1 ⇓ v
<E|H|C|I|once L0 == L1>−→ <E|H|C|I>

(S-ONCEIDENTITY)

<E|H|C|I|once L0 == L1>−→ <E|H|C|I>
I′ = I ∧ L0 == L1

<E|H|C|I|always L0 == L1>−→ <E|H|C|I′>
(S-ALWAYSIDENTITY)

The rule below describes the semantics of assignments.
We employ the two-phase process described in the previous
section, each represented by a “solve” premise. First the
identity constraints are solved in the context of the new
assignment. This phase only asserts weak stay constraints,
thereby allowing the effect of the assignment to propagate
through the identities, potentially changing the structures
of objects as well as the relationships among objects in
the environment and heap. In the second phase, the value
constraints are typechecked against the new environment
and heap resulting from the first phase. If they are well typed,
then we proceed to solve them in the same manner as a once
constraint (see S-ONCE above). This phase can change the
values of primitives but will not modify the structure of any
object.

775

stay(E, ρ) = CE stay(H, ρ) = CH E;H` C C′

E′;H′ |=(C′ ∧ CE ∧ CH)

solve(E, H, C, ρ) = E′;H′
(SOLVE)

E = {(x1, v1), . . ., (xn, vn)} stay(x1=v1, ρ) = C1 · · · stay(xn=vn, ρ) = Cn
stay(E, ρ) = C1 ∧ · · · ∧ Cn

(STAYENV)

H = {(r1, o1), . . ., (rn, on)} stay(r1=o1, ρ) = C1 · · · stay(rn=on, ρ) = Cn
stay(H, ρ) = C1 ∧ · · · ∧ Cn

(STAYHEAP)

stay(x=c, ρ) = weak x=c (STAYCONST)

stay(x=r, ρ) = ρ x=r (STAYREF)

x1 fresh · · · xn fresh stay(x1=v1, ρ) = C1 · · · stay(xn=vn, ρ) = Cn
stay(r = {l1:v1,. . .,ln:vn}, ρ) = (required H(r)={l1:x1,. . .,ln:xn}) ∧ C1 ∧ · · · ∧ Cn

(STAYOBJECT)

Figure 1: Helper rules for solving constraints.

E;H` e⇓ v
stayPrefix(E, H, L) = CL stayPrefix(E, H, I) = CI

solve(E, H, CL ∧ CI ∧ L=v∧ I, weak) = E′;H′

E′;H′ ` C solve(E′, H′, C∧ L=v, required) = E′′;H′′

<E|H|C|I|L := e>−→ <E′′|H′′|C|I>
(S-ASGN)

The “stayPrefix” premises above impose a special form
of stay constraints when solving identity constraints. These
constraints are defined in Figure 2 and ensure that the l-value
being assigned as well as the l-values in I will be updated
deterministically. Specifically, if an l-value that may need to
be updated has the form L0.l, then the stayPrefix constraints
ensure that the constraint solver will not change the value of
L0.

The next rule describes the semantics of object creation,
which is straightforward. For simplicity we require a new
object to be initially assigned to a fresh variable, so no con-
straint solving is required. This is no loss of expressiveness
since that variable can immediately be used on the right-
hand side of an arbitrary assignment.

o = {l1:e1,. . .,ln:en}
E;H` e1 ⇓ vn · · · E;H` en ⇓ vn
E(x)↑ H(r)↑ E′ = E

⋃
{(x, r)}

H′ = H
⋃

{(r, {l1:v1,. . .,ln:vn})}
<E|H|C|I|x := new o>−→ <E′|H′|C|I>

(S-ASGNNEW)

The remaining rules are standard for imperative lan-
guages and are provided for completeness.

<E|H|C|I|skip>−→ <E|H|C|I> (S-SKIP)

<E|H|C|I|s1>−→ <E′|H′|C′|I′>
<E′|H′|C′|I′|s2>−→ <E′′|H′′|C′′|I′′>
<E|H|C|I|s1;s2>−→ <E′′|H′′|C′′|I′′>

(S-SEQ)

E;H` e⇓ true <E|H|C|I|s1>−→ <E′|H′|C′|I′>
<E|H|C|I|if e then s1 else s2>−→ <E′|H′|C′|I′>

(S-IFTHEN)

E;H` e⇓ false <E|H|C|I|s2>−→ <E′|H′|C′|I′>
<E|H|C|I|if e then s1 else s2>−→ <E′|H′|C′|I′>

(S-IFELSE)

E;H` e⇓ true <E|C|H|I|s>−→ <E′|H′|C′|I′>
<E′|H′|C′|I′|while e do s>−→ <E′′|H′′|C′′|I′′>
<E|H|C|I|while e do s>−→ <E′′|H′′|C′′|I′′>

(S-WHILEDO)

E;H` e⇓ false
<E|H|C|I|while e do s>−→ <E|H|C|I>

(S-WHILESKIP)

3.3 Key Properties
We state two key theorems about the Babelsberg/UID core
language. The proofs for these theorems can be found in the
companion technical report [7]. The first theorem formalizes
the idea that any solution to a value constraint preserves the
structures of all objects and the relationships among objects:
Theorem. (Structure Preservation)
If <E|H|C|I|(once|always) C0>−→ <E′|H′|C′|I′> and

E;H` C0 and E;H`x : T,
then E′;H′ `x : T.

The second theorem formalizes the idea that the result
of an assignment statement is deterministic in terms of the
resulting object structures:

776

stayPrefix(E, H, x) = true (STAYPREFIXVAR)

L = x.l1.. . ..ln n > 0 E;H` x⇓ r0 E;H` r0.l1 ⇓ r1 · · · E;H` rn−2.ln−1 ⇓ rn−1
stayPrefix(E, H, L) = x=r0 ∧ r0.l1=r1 ∧ · · · ∧ rn−2.ln−1=rn−1

(STAYPREFIXFIELD)

I = L1==L2 ∧ · · · ∧ L2n−1==L2n stayPrefix(E, H, L1) = C1 · · · stayPrefix(E, H, L2n) = C2n
stayPrefix(E, H, I) = C1 ∧ · · · ∧ C2n

(STAYPREFIXIDENT)

Figure 2: Additional stay constraints for solving identity constraints.

Theorem. (Structural Determinism)
If <E|H|C|I|L := e>−→ <E1|H1|C1|I1> and

<E|H|C|I|L := e>−→ <E2|H2|C2|I2> and
E;H`x : T0,

then there exists a type T such that E1;H1 `x : T and
E2;H2 `x : T.

4. Evaluation
Our aim in developing a formal semantics for Babelsberg
has been primarily a practical one, including clarifying the
desired behavior of the language, providing a guide for lan-
guage implementors, and proving useful language properties
that then can be relied on by programmers.

One piece of evidence of success is that we have in
fact clarified the desired behavior of the language, and as
discussed in the introduction, in response have adapted the
existing Babelsberg/JS implementation to conform to it.

Beyond that, we offer two forms of evaluation. First, we
have implemented our natural semantics in the Relational
Meta-Language (RML) [20], yielding executable semantics
both for the core Babelsberg/UID language presented above,
and for Babelsberg/Objects [6], an extended, object-oriented
language, which includes support for classes, methods, and
constraint definitions that can include polymorphic method
calls. We then evaluated a set of test programs in these ex-
ecutable semantics, using the Z3 solver [3] to provide heap
and environment updates. As an extension to that, we pro-
vide a translation framework to generate test suites for the
implementations in JavaScript, Ruby, and Smalltalk from
our test programs. We have adapted the JavaScript imple-
mentation of Babelsberg and show that the practical imple-
mentation and semantics produce the same results for most
of the tests, except those that test features of value classes,
which are not available in JavaScript.

As a second form of evaluation, we have adapted the cur-
rently existing suite of example programs for Babelsberg/JS
to the revised language. We demonstrate that nearly all of the
programs continue to work without modification, or work
with minimal adjustments. (These adjustments are described
below.) Those programs that do not work anymore stopped
doing so because they use constructs we explicitly decided
to disallow.

4.1 An Executable Semantics
RML is a programming language to generate executables
from natural language specifications. It provides relations as
basic building blocks for the semantics and translates these
to C. It was possible to implement our semantics exactly in
RML. As the semantics does not model the solving process,
we have added a translation from our constraint syntax to
Z3, which solves the constraints and generates a model of
the new heap and environment. Because our semantics relies
on soft constraints, we use an experimental version of Z3
that supports them [1].

Z3 types expressions and does not allow variables to
change their type. Our structural typing rules, however, do
allow variables to change their type, for example, from a real
to an integer or a string. In the implementation we thus must
reconcile Z3 typing with our structural typing rules. To do
so, we declare variables in Z3 as a union type Value that has
real, boolean, reference, and value class components. The
last is encoded as a Z3 array that maps labels to reals. La-
bels and references are declared as finite domain types that
range over the existing references and record labels respec-
tively. We define the operation, comparison, and combina-
tion functions on that union type.

In reference [6], we provide 47 short test programs that
illustrate various aspects of the semantics. We use these to
validate that our semantics exhibits the characteristics we
want. Of those 47 programs, three use constraints on strings,
which are not supported in the version of Z3 we used. (A
string theory exists for an older version of Z3 [23], but does
not work in recent versions.) The remaining 44 all run and
produce the expected results at each step of the execution.5

As an extension to the RML implementation, we add a
module to transform the example code into test cases for the
various implementations of Babelsberg. This will provide an
avenue for future development of Babelsberg — as the se-
mantics evolve, test cases for the existing implementations
can be generated and the implementations adapted to pass
the generated tests. To generate the tests, we run our exam-
ples through the generated RML executable, automatically
translate them into the syntax of the target language using a
simple mapping provided for each language, and wrap them

5 The entire executable semantics and the test programs are available at
https://github.com/babelsberg/babelsberg-rml and as an arti-
fact with this paper.

777

https://github.com/babelsberg/babelsberg-rml

in a test scaffold (also specific to each language) to execute
them in each implementation.

All of the pre-existing implementations of Babelsberg re-
quire adaptation to pass these tests, because all deviate from
our new semantics in one way or another. We began with the
JavaScript implementation, as it is the most advanced, and
updated it based on the work described here. After modifi-
cation, of the 44 test cases that work in the RML semantics,
41 produce the expected results. The remaining three specif-
ically test properties of value classes in constraints. Since
JavaScript does not support value classes, and since we do
not currently emulate them in some way in the scaffolding
code, these three tests fail, in one case producing no result
when there is a solution, and the other two producing a so-
lution when solving should fail. We have also tested, but not
adapted, the Ruby and Squeak implementations. Both Ba-
belsberg/R and Babelsberg/S pass 28 out of 44 tests. In ad-
dition to the value class failures, these implementations also
fail some tests concerning object identity, due to insufficient
support for explicit identity constraints and use of an older
version of Z3 that does not include soft constraints.

4.2 Applying the Semantics to Babelsberg/JS
Adapting Babelsberg/JS to follow the semantics presented
here required changes to both the translation from impera-
tive expressions to constraints (called constraint construc-
tion in Babelsberg/JS) and the way in which the solvers are
called, as well as changes to some of the existing example
programs.

4.2.1 Modifications to the Implementation
First, we modified the code that translates JavaScript expres-
sions into constraints to only inline methods that consist of a
simple return expression. Methods that have any other state-
ments in them are executed and their result returned, rather
than being inlined, so they can only be used in the forward
direction. We did not modify the translation to prohibit cre-
ating new objects — as described in Section 2.4.2, we allow
these since JavaScript does not include value classes, and as-
sume that, when new objects are created in constraints, our
conventions on object creation, modification, and not testing
for identity are followed. As an optimization, Babelsberg/JS
omits re-translating expressions if no dependent variables
changed. We have left this optimization in place.

The second change added support for our restricted form
of identity constraints. Before, users of Babelsberg/JS could
use identity checks as part of ordinary constraints, as long
as they used an appropriate solver. We now disallow this,
and in its place add a restricted form of identity constraints.
In the executable semantics, identity constraints can be
solved using Z3 by reasoning over the finite domain of avail-
able references and updating the environment. However, in
JavaScript we cannot reflect on the heap or use first-class ref-
erences, so identity constraints cannot be solved in the same
way. Instead, we use the DeltaBlue local propagation solver

[9] to propagate identity changes as they occur, and call
any solvers for value constraints after that. Babelsberg/JS,
through its implementation of a cooperating solvers archi-
tecture, already supports solving in multiple phases. The
two-phase solving of identity and value constraints in the
formalism is thus implemented simply by ensuring that the
DeltaBlue solver for identity constraints is always run be-
fore any other solvers. This still allows the developer to use
other instances of the DeltaBlue solver for value constraints,
but, just as with all solvers for value constraints, they will be
called after all the object identities are determined.

4.2.2 Modifications to Existing Programs
One of our strategies in this work has been to start with clear
and simple rules that are understandable to the programmer
and amenable for use in proofs, recognizing that some of
these rules would likely be too conservative. We next assess
where the key limitations are by testing them with a set of
typical programs6, finding which ones no longer work, and
classifying the problems that arise frequently. We now sum-
marize the problems that we discovered, and also discuss
possible directions for amending our rules to be more con-
venient. However, in considering such amendments, we need
to balance simplicity and clarity with the needs for additional
expressiveness. In particular, we do not want to introduce a
large number of additional special cases or forms, and in any
case we need to retain soundness.

The programs we examine were constructed using the
LivelyKernel’s direct manipulation Morphic interface, and
include a graphical application for building and simulating
electrical circuits, games, a GUI for a color picker, and tools
for temperature conversion. They are about 200 lines of code
each, with between 1⁄4 and 1⁄2 of those being constraint def-
initions. These programs illustrate the division of labor and
interplay between the imperative object-oriented portions of
the code and the constraint parts, as well as the different
kinds of constraints and solvers that can be employed. The
electrical circuit editor and simulator [5], for example, uses
constraints and an appropriate solver to capture the relevant
laws of physics such as Ohm’s Law and Kirchhoff’s Cur-
rent Laws and to solve the resulting sets of simultaneous lin-
ear equations, and imperative constructs to support actions
such as making new resistor, battery, and meter instances,
and placing and connecting them. The color picker and tem-
perature converter [5] illustrates hard and soft constraints, as
well as support for fast incremental re-solving during inter-
active editing.

We present each issue, its intended semantics, a work-
around with our current semantics, and directions for future
work that could address the issue.

6 The examples we used are part of a published artifact [5], and are also
available from the Babelsberg/JS repository at https://github.com/
babelsberg/babelsberg-js. We used the versions from the repository.

778

https://github.com/babelsberg/babelsberg-js
https://github.com/babelsberg/babelsberg-js

Argument Checking Many LivelyKernel methods have,
besides a return statement, some statements that check the
number, types, or structure of arguments. As per our seman-
tics, such methods do not work multi-directionally. In fact,
allowing them to be truly multi-directional would allow the
solver to change the number, types, or structure of argu-
ments, which are examples of the surprising behaviors we
want to avoid. As an example, consider the frequently used
method to add two points in LivelyKernel:

Listing 6.
1 function addPt(p) {
2 if (arguments.length != 1)
3 throw (’addPt() only takes 1 parameter.’);
4 return new lively.Point(this.x + p.x, this.y + p.y);
5 }

We almost certainly don’t want to satisfy a constraint that
calls the addPt method with a bad argument by changing the
argument to be a point. Instead, the argument check should
not be part of the constraint.

As a workaround, although it is not semantically clean,
the practical implementation does allows such tests on argu-
ments, because these checks are so pervasive that removing
them was very inconvenient. As part of future work, we may
want to support assertions as constructs that can be checked
before handing the constraints to the solver. Assertions can
then be used instead of branches and explicit exceptions.

Branching We encountered a similar issue with meth-
ods that return one of two expressions, depending on a
test. Our semantics does not allow branching in multi-
way constraints. Such a method encountered frequently is
getPosition:

Listing 7.
1 function getPosition() {
2 if (!this.hasFixedPosition() || !this.world()) {
3 return this.morphicGetter(’Position’);
4 } else {
5 return this.world().getScrollOffset().
6 addPt(this.morphicGetter(’Position’));
7 }
8 }

The desired semantics is that we can use getPosition
in a constraint, either to access the current position or to
modify the object’s position, but not to modify the object’s
FixedPosition flag. However, the builtin getPosition
was not written anticipating its possible use in constraints,
and so FixedPosition is not annotated as read-only. As
an earlier workaround, the programmer was able to select
a particular solver to get the desired behavior. Cassowary,
for example, cannot reason about booleans and treated the
flag as a constant, as intended. Z3, on the other hand, would
sometimes change FixedPosition, leading to surprising
solutions and graphical glitches.

In our semantics, the specifics of the solver no longer in-
fluence the meaning of using getPosition in a constraint
— it can only be used in the forward direction. As a work-
around for using it multi-directionally, the developer can
move the test outside of the method and add the constraint
only for the branch that is chosen. In future work, we want to
add a mechanism to recognize this pattern and automatically
mark the branch condition as read-only to the solver.

Benign Side Effects Lazy initialization and caching are
used in some of the example applications. We explicitly al-
lowed such benign side effects in prior work [4, 5], but our
formal semantics now disallows them. (We believe that this
is an appropriate simplification for the formal semantics,
preferring to leave this issue to clear but less formal guid-
ance to programmers and language implementors.) For ex-
ample, the LivelyKernel method Morph.getBounds is used
in many of the examples. The code below was adapted to
focus on the caching — the method also uses branches and
local variables, which are also disallowed now:

Listing 8.
1 function getBounds() {
2 if (this.cachedBounds) return this.cachedBounds;
3 // ... other code paths guarded with branches
4 return this.cachedBounds = this.innerBounds();
5 }

The desired semantics is to bypass the cache and affect the
actual fields that contribute to the calculation of the bounds.

A workaround here is to call innerBounds directly, and
circumvent the caching. In the practical applications, this
change had the additional benefit of removing some UI
glitches that happened when the solver changed the cached
bounds, but the rendering code was watching the inner
bounds. As future work, we want to introduce rules in the
semantics to recognize cached values as benign side-effects,
so the solver modifies the correct fields and invalidates or
updates the cache appropriately.

Local Variables Some methods use local variables to split
up calculations or name constants. We explicitly allowed
such methods in the original Babelsberg design, as long as
the variables were used in static-single-assignment (SSA)
fashion [4].

Listing 9.
1 function pressure() {
2 var gasConstantDryAir = 287.058, // J/(kg*K)
3 density = 1.293, // kg/m^3
4 entropyPerVol = gasConstantDryAir * density;
5 return entropyPerVol * this.K / 1000;
6 }

Although the desired semantics in this case is to inline the
variables as constants into the return expression, our expe-
rience with OCP has shown that it is not always clear if the

779

system should change the value of hidden variables if they
are used to build a constraint system, or if they can always
be regarded as constants. We thus argue that, although some-
times inconvenient, the restriction to disallow local variables
makes it easier to reason about the programs.

As a workaround, manual inlining of the split up calcula-
tion into the return expression was required. As an extension
to our rules, when local variables are used only as names for
constants, these should be inlined automatically.

Overall, we think that these changes, although they repre-
sent additional work for the programmer, improve the clarity
of the code and make the interactions between the object-
oriented part and the constraints more comprehensible. A
future goal will be to see which of these workarounds can
be removed, while still maintaining a clean and comprehen-
sible set of rules for the interaction of the object-oriented
core and constraints.

5. Application to Related Work
There are a large number of related systems that integrate
constraints with imperative languages, ranging from con-
straint satisfaction libraries and domain specific languages
(DSLs) to Object-Constraint Programming languages that of-
fer syntactic and semantic integration. How these systems
choose to balance the power of solvers and how aware the
programmers need to be of possible non-determinism varies,
as does the extent to which programmers are able to express
constraints involving arbitrary mutable objects, object iden-
tity, or methods.

The work presented here allows object-constraint lan-
guages to use different constraint solver libraries as black
box solvers and ensures that using a different solver does
not introduce non-deterministic and surprising behaviors re-
garding the structure and identity of objects. A large num-
ber of constraint satisfaction libraries exist7, however, these
systems do not integrate syntactically or semantically with
the host language. They require explicit action by the devel-
oper to copy and convert variables between the imperative
and declarative systems, require the developer to explicitly
ensure that the solver is called at appropriate times, and re-
quire explicit action to deal with updates to the object graph.
Thus, our work is not directly relevant to those systems by
themselves, but allows them to be used as solvers in an OCP
language.

Kaleidoscope [8, 16] was an early Constraint Imperative
Programming (CIP) language, and had to address issues that
arise from integrating declarative constraints and imperative
code with mutable state. Kaleidoscope uses soft constraints
to ensure that, in the absence of other constraints, the solver
does not change the values of existing variables, which we
also encode in our semantics. In contrast to the work pre-

7 See, for example, this catalog: http://openjvm.jvmhost.net/
CPSolvers/, accessed March 9, 2015

sented here, Kaleidoscope separates methods that generate
constraints from ordinary methods. This avoids having to
give rules for how a method can be used in constraints, but it
puts the burden on the programmer to develop and maintain
two sets of interfaces, one for use in constraints and one for
use in imperative statements.

Kaleidoscope’93 also included support for identity con-
straints [16], to express the distinction in object-oriented
languages between object equality and identity. However,
Kaleidoscope’93 allowed the solver to determine the iden-
tity of method arguments when solving value constraints,
and used multi-method dispatch to look up methods in a
constraint. In combination this gave the system much power,
but also made it hard to understand which solution the sys-
tem might select. In our semantics constraints do not use
multi-method dispatch, removing one dimension of freedom
from the solver (as well as conforming to a more standard
semantics for an object-oriented language) and in addition
the solver is not allowed to change the identity or structure
of arguments for value constraints.

Turtle [11] is a more recent CIP language written from
scratch, while Kaplan [14] provides constraints in Scala.
Both separate the declaration of constrainable variables
from ordinary variables to make it clearer what may hap-
pen when a variable is used. Neither includes support for
identity constraints, however. Like Babelsberg, the Turtle
system provides constraint priorities; Kaplan does not. Be-
cause ordinary variables in Turtle are not determined by the
solver, only constrainable variables have low-priority stay
constraints on them. Kaplan does not currently support con-
straints over mutable types, so stay constraints are not rel-
evant for it. Analogous to Kaleidoscope and in contrast to
OCP, both languages separate constraint functions from or-
dinary functions. In Kaplan, only such specifically annotated
functions can be used in constraints. Turtle does allow or-
dinary methods and variables in constraints; however, their
values are treated as constants, making all ordinary methods
work only in the forward direction. We believe the simple
rules for method inlining in our semantics could be used
with these systems as well to allow a restricted set of ordi-
nary object-oriented methods to be used in constraints.

BackTalk [19, 21] and SQUANDER [17] explicitly al-
low the constraint solver to determine object structure, and
even to create new objects that satisfy a set of constraints.
While these systems have many differences, both use object-
oriented methods in constraints as tests for a backtracking
algorithm that tries different objects and object structures as
assignments for the constrained variables. Thus, it is a basic
property of these systems to allow actions that we prohibit in
OCP. In those systems, constraints are most useful when the
concrete identity of an object is not relevant. When declara-
tive code interacts with imperative code, however, this may
not be the case, especially in dynamic languages such as
JavaScript, where libraries add and remove fields to specific

780

http://openjvm.jvmhost.net/CPSolvers/
http://openjvm.jvmhost.net/CPSolvers/

instances at runtime and check for object identity rather than
fields. Our structural type-checks could be used to limit the
amount of non-determinism in these systems by ensuring
that all solutions to a constraint must have the same struc-
ture.

Mozart/Oz [22] is a multi-paradigm language that sup-
ports functional, imperative, and logic programming. It
also has a special focus on supporting concurrency, non-
determinism, and search. In Oz, constraint programming is
much more explicit than in an object-constraint language,
with explicit variable types for unbound and finite-domain
variables. Oz uses a constraint store that is monotonic, mean-
ing that bindings and constraints can be added but not re-
moved or changed, which is something we explicitly support
in the work presented here. Another difference is that Oz ex-
plicitly allows non-determinism in constraint solving. Two
features of Oz that we do not have are explicit integration of
threads of concurrent execution and constraint solving, and
support for backtracking (although we have a design for the
latter, which we will be investigating as part of future work).

Finally, αRby [18] is a language that embeds the Alloy
specification language [12] in Ruby. Its goal is to allow Al-
loy users to easily pre- or post-process their models using
imperative libraries, for example to experiment with visual-
izations for Alloy models. αRby translates Ruby programs
into Alloy, but the programs are written in a DSL that closely
mimics the Alloy language rather than using ordinary Ruby
classes and methods. In contrast to OCP, αRby aims to pro-
vide imperative constructs to Alloy users, that is, program-
mers familiar with constraints. The restrictions on the solver
we introduce in this work for the benefit of imperative pro-
grammers are thus not desirable in αRby.

6. Conclusion and Future Work
We have presented design principles to control the power
of the solver in object-constraint programming languages to
avoid surprising or non-deterministic behavior by ensuring
that object structure and identity are preserved when adding
constraints, and that any changes to them are determinis-
tic. We also presented a small set of syntactic rules that
guide developers in expressing constraints. Our principles
are formalized in a natural semantics for an object-constraint
language that preserves key properties of existing object-
constraint implementations. For this semantics we presented
two theorems that formalize two key properties of the first
principle, namely that we never allow the solver to find so-
lutions that would needlessly add or remove fields from ex-
isting objects. Our rules also ensure that the only way for
a variable to change its structure is through an assignment
statement — thus, solving constraints outside of an assign-
ment can never lead to solutions in which variables change
their structure.

The semantics given here defines a useful subset of the
language. A full object-constraint language that supports

standard classes and methods is described in reference [6].
This description includes formal rules for defining con-
straints on the results of message sends that implement our
informal description in Section 2.4.3. Its restrictions are easy
to understand, but may be too conservative, as shown by our
experiences with existing Babelsberg example programs.
One direction for future work will be to allow somewhat
more general kinds of expressions in methods called from
constraints to be used multi-directionally.

We also presented an executable semantics that can run a
suite of example programs, provided a mechanism to gener-
ate a language test suite to check the implementations’ con-
formance to the semantics, and so far modified one existing
implementation to follow our design, thus demonstrating its
practicality. Another direction for future work is to use this
test suite to move other implementations closer to conform-
ing to the semantics, to further test its practicality.

Acknowledgments
Many thanks to our colleagues in the Communications
Design Group for much useful feedback on this work. This
research was funded by the Hasso Plattner Institute, SAP,
and Viewpoints Research Institute.

References
[1] N. Björner and A.-D. Phan. νZ–maximal satisfaction with Z3.

In Symbolic Computation in Software Science, 2014.

[2] A. Borning, B. Freeman-Benson, and M. Wilson. Constraint
hierarchies. LISP and Symbolic Computation, 5(3):223–270,
1992.

[3] L. De Moura and N. Bjørner. Z3: An efficient SMT solver. In
TACAS, pages 337–340. Springer, 2008.

[4] T. Felgentreff, A. Borning, and R. Hirschfeld. Specifying
and solving constraints on object behavior. Journal of Object
Technology, 13(4):1–38, 2014.

[5] T. Felgentreff, A. Borning, R. Hirschfeld, J. Lincke,
Y. Ohshima, B. Freudenberg, and R. Krahn. Babelsberg/JS:
A browser-based implementation of an object constraint lan-
guage. In ECOOP, pages 411–436. Springer, 2014.

[6] T. Felgentreff, T. Millstein, and A. Borning. Develop-
ing a formal semantics for Babelsberg: A step-by-step ap-
proach. Technical Report 2014-002b, Viewpoints Research
Institute, 2015. Available at http://www.vpri.org/pdf/
tr2014002_babelsberg.pdf.

[7] T. Felgentreff, T. Millstein, A. Borning, and R. Hirschfeld.
Checks and balances — constraint solving without surprises
in object-constraint programming languages: Full formal de-
velopment. Technical Report 2015-001, Viewpoints Research
Institute, 2015.

[8] B. Freeman-Benson and A. Borning. Integrating constraints
with an object-oriented language. In ECOOP, pages 268–286,
June 1992.

[9] B. N. Freeman-Benson, J. Maloney, and A. Borning. An
incremental constraint solver. Communications of the ACM,
33(1):54–63, 1990.

781

http://www.vpri.org/pdf/tr2014002_babelsberg.pdf
http://www.vpri.org/pdf/tr2014002_babelsberg.pdf

[10] M. Graber, T. Felgentreff, R. Hirschfeld, and A. Borning.
Solving interactive logic puzzles with object-constraints — an
experience report using Babelsberg/S for Squeak/Smalltalk.
In Workshop on Reactive and Event-based Languages & Sys-
tems, 2014.

[11] M. Grabmüller and P. Hofstedt. Turtle: A constraint im-
perative programming language. In RDIS, pages 185–198.
Springer, 2004.

[12] D. Jackson. Alloy: A lightweight object modelling notation.
ACM Transactions on Software Engineering and Methodol-
ogy, 11(2):256–290, 2002.

[13] J. Jaffar and J.-L. Lassez. Constraint logic programming. In
POPL, pages 111–119. ACM, 1987.

[14] A. S. Köksal, V. Kuncak, and P. Suter. Constraints as control.
In POPL, pages 151–164. ACM, 2012.

[15] G. Lopez, B. Freeman-Benson, and A. Borning. Constraints
and object identity. In ECOOP, pages 260–279. Springer,
1994.

[16] G. Lopez, B. Freeman-Benson, and A. Borning. Kaleido-
scope: A constraint imperative programming language. In
Constraint Programming, volume 131 of NATO ASI Series,
Series F: Computer and System Sciences, pages 313–329.
Springer, 1994.

[17] A. Milicevic, D. Rayside, K. Yessenov, and D. Jackson. Uni-
fying execution of imperative and declarative code. In ICSE,

pages 511–520. ACM/IEEE, 2011.

[18] A. Milicevic, I. Efrati, and D. Jackson. αRby–an embedding
of Alloy in Ruby. In Abstract State Machines, Alloy, B, TLA,
VDM, and Z, volume 8477 of Lecture Notes in Computer
Science, pages 56–71. Springer, 2014.

[19] F. Pachet and P. Roy. Integrating constraint satisfaction tech-
niques with complex object structures. In Conference of the
British Computer Society Specialist Group on Expert Systems,
pages 11–22. Cambridge University Press, 1995.

[20] M. Pettersson. RML—a new language and implementation
for natural semantics. In PLILP, pages 117–131. Springer,
1994.

[21] P. Roy, A. Liret, and F. Pachet. A framework for object-
oriented constraint satisfaction problems. In Computing
Surveys Symposium on Object-Oriented Application Frame-
works, pages 1–22. ACM, 2000.

[22] P. Van Roy, P. Brand, D. Duchier, S. Haridi, C. Schulte, and
M. Henz. Logic programming in the context of multiparadigm
programming: The Oz experience. Theory and Practice of
Logic Programming, 3(06):717–763, 2003.

[23] Y. Zheng, X. Zhang, and V. Ganesh. Z3-str: A Z3-based string
solver for web application analysis. In ESEC/FSE, pages 114–
124. ACM, 2013.

782

	Introduction
	Overview
	Structure Preservation
	Identity Preservation
	Structural/Identity Determinism
	Invoking Methods in Constraints
	Dynamic Dispatch
	Side Effects
	One-Way and Multi-Way Constraints

	Formalism
	Syntax
	Operational Semantics
	Key Properties

	Evaluation
	An Executable Semantics
	Applying the Semantics to Babelsberg/JS
	Modifications to the Implementation
	Modifications to Existing Programs

	Application to Related Work
	Conclusion and Future Work

