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Abstract

Object-constraint programming provides a design to integrate con-
straints with dynamic, object-oriented programming languages. It
allows developers to encode multi-way constraints over objects
and object collections using existing, object-oriented abstractions.
These constraints are automatically maintained at run-time.

One original goal of the Babelsberg-family of object-constraint
programming languages was to allow users familiar with the im-
perative paradigm to quickly and efficiently make use of constraint
solver capabilities. Yet, practical problems often require careful se-
lection of solvers to find good solutions (or any at all). Furthermore,
solver performance can vary and while most solvers come with var-
ious optimizations, developers have to have a good understanding
of the solving process to use these optimizations effectively. This,
however, is difficult to achieve if the solver is automatically se-
lected by the system.

In this work, we discuss three different implementations for au-
tomatic solver selection that we used in Babelsberg implementa-
tions. As a second step, we look at the performance potential of edit
constraints that are available in some solvers such as Cassowary or
DeltaBlue, and how they can be applied automatically to improve
solver performance. We argue that these techniques make object-
constraint programming more practical by improving the quality
and performance of solutions.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Constraints

Keywords Constraints, Incremental Re-solving, Object Con-
straint Programming, Constraint Imperative Programming,
Babelsberg

1. Introduction

Babelsberg [6] is a design to integrate constraints into object-
oriented languages in a way that allows programmers to dynam-
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ically create and satisfy constraints on objects. The design is a
strict extension of the object-oriented semantics of the underly-
ing host language [8]. Babelsberg uses object-oriented method def-
initions to define constraints rather than a domain-specific lan-
guage (DSL) [17, 20]. As a consequence, constraint expressions
in Babelsberg respect encapsulation and can re-use object-oriented
abstractions. The design also supports solver features such as con-
straint priorities [3] and incremental resolving [11], and can use
multiple cooperating constraint solvers to search for solutions [7].

Examples for application domains where constraints can be par-
ticularly useful are physical simulations and animation, load bal-
ancing, data structure repair, and puzzle solving. For example, cre-
ating an imperative implementation of a Sudoku game works well
for the graphical parts and user interaction, that is, for describing
what should be displayed and what should happen when the user
provides input. But spelling out how even a naive Sudoku solver
works in object-oriented code still requires dozens of lines of code.
Using the Babelsberg design and constraints, however, allows the
user to describe the desired state that a valid Sudoku should have
using ordinary objects and imperative methods.

1 always {
2 sudoku.cells().all? { |c| 1 <= c && c <= 9 } &&
3 sudoku.rows().all? { |r| r.all_different? } &&
4 sudoku.columns().all? { |c| c.all_different? } &&
5 sudoku.boxes().all? { |b| b.all_different? }
6 }

Consider the above code listing. The predicates are valid
Babelsberg code (implemented on top of Ruby), and assert that all
cells of a Sudoku must have numbers between 1 and 9 and that all
rows, columns, and 3x3 boxes in the Sudoku must not contain du-
plicate numbers. The constraint is introduced using the always:
keyword, and uses ordinary object-oriented methods such as all?,
all_different?, or <=. The Babelsberg design defines how to
translate these expressions into a form ready for consumption by a
constraint solver, and how the solution is fed back into the program
state. This frees the developer from writing or maintaining the code
for the solving itself. The only two conditions on constraint expres-
sions are that they must return a boolean and that they must be free
of side-effects [8].

An incomplete aspect of the original Babelsberg design was that
it allowed multiple constraint solvers to be used cooperatively to
solve constraints, but provided only minimal guidance to develop-
ers for deciding which solvers to use. Users who were not familiar
with the capabilities and limits of the various available solvers of-
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ten resorted to trial and error find a working combination of solvers
for a particular problem. Since it is in general much easier to state
constraints than to solve them, practical constraint solvers restrict
themselves to a useful subset of constraints in a particular domain
for efficiency. This is apparent in many popular solvers: the Cas-
sowary solver [1] can efficiently solve multi-way linear equations
on floats using the simplex method; Z3 [4] is an SMT can nu-
merically solve for reals, integers, booleans, as well as record data
types; Kodkod [24], Z3, and Ilog [19] can enumerate solutions; and
DeltaBlue [10] can solve multi-way constraints using local propa-
gation. An even more restricted approach is to only consider one-
way constraints that can compute an output value given new inputs,
but not vice versa (e. g., [14, 18]). These restrictions must be con-
sidered when choosing solvers for a concrete set of constraints. In
this work we discuss three different implementations for automatic
solver selection that we used in the practical Babelsberg implemen-
tations.

These problems are also present in related approaches that com-
bine constraints with general-purpose, imperative languages such
as the earlier constraint-imperative programming (CIP) language
Kaleidoscope [16] or Rosette [23], a solver-aided language based
on Racket. In the former, the user has no control over which solver
is chosen — adding a solver requires the language implementer to
extend the solver-selection procedure to decide which solver to use.
In Rosette, solvers can be added by users of the language, but users
also have to manually specify which solver to use for a particular
problem.

Even if a working solver is found for a concrete set of con-
straints, it may not be optimal in terms of performance. Although
solving strategies such as incremental re-solving [11] and re-
ordering of constraint declarations can improve performance of
some solvers and are available in Babelsberg implementations [6],
these optimizations have to be applied explicitly and are specific to
particular solvers. Furthermore, the Babelsberg semantics treats the
solver as a black box, and thus does not include a principled way
of utilizing such optimizations [8]. In contrast, modern imperative
language runtimes apply a growing number of optimizations auto-
matically in a principled manner — either at compile-time or using
just-in-time (JIT) compilation techniques — so that even unopti-
mized code provides good performance. To apply these techniques
to constraint solving, we look at the performance potential of edit
constraints in Babelsberg, and propose strategies to apply them au-
tomatically to improve solver performance.

Surprisingly, these automatic optimization strategies are not
commonly applied to constraint solvers — as far as we know, there
are no constraint solvers optimized for interactive use that optimize
their own data structures. Thus, the optimization strategies we pro-
pose here can also be beneficial to the Cassowary and DeltaBlue
solvers when used in other contexts. Additionally, our results in-
dicate that further research into the optimization potential for con-
straint solvers and their data structures is warranted.

The contributions of this work are:

• Three practical implementations for automatically selecting a
constraint solver given a concrete set of constraints.

• A novel application of JIT-compiler techniques to the Cas-
sowary and DeltaBlue constraint solvers to improve solving
performance transparently.

2. Automatic Solver Selection

Given that multiple solvers can be used cooperatively with the
Babelsberg design, we need to figure out which solver to use for
which constraint. Consider again the Sudoku constraints from page
1. These constraints are in the domain integers, and use pairwise
inequalities. To solve them requires a constraint solver that can deal

with inequalities over integers. Either the developer or the system
must decide which solver is capable of solving these constraints
and use it. In this section, we present different heuristics for having
the system select a solver automatically and present their trade-offs.

The solvers in the ThingLab [2] constraint programming system
as well as from the Kaleidoscope constraint-imperative program-
ming system [9] were automatically selected based on the type
of constraint that was handed to it. In these languages, however,
the set of available constraint solvers was fixed. More importantly,
each solver had capabilities that the others lacked, and thus many
constraints could clearly only be handled by one particular solver.
The algorithm which determined how the constraints were added
to the solvers only had to check for these specific capabilities of
the solvers, and could be optimized easily. Such an algorithm is
not possible with the Babelsberg design, however, since we do not
know in advance which capabilities the solvers have, and the set
of solvers can be extended by the user. Even worse, we may want
to use different solvers with exactly the same capabilities, but that
have different characteristics with regards to performance or solu-
tion quality.

The simplest approach at assigning a constraint to a particular
solver would be to let the developer do it. Each constraint must then
be annotated with the correct solver to use in the source — if the se-
lection is incorrect (i. e., assigning the constraint to a solver which
cannot solve it) or not ideal (i. e., using a general purpose prob-
lem solver when a specialized algorithm exists), the system does
not attempt to correct the problem. However, this simple approach
is undesirable. Object-constraint programming (OCP) is supposed
to provide convenient access to constraint solving for imperative
programmers, thus it is inconvenient to expect each user to have
to learn about the capabilities and trade-offs between the different
solvers before using them. Instead, manual annotation should be
the fallback if the system is unable to select the ideal solver in a
situation. This fallback is available in all Babelsberg implementa-
tions, but the implementations use different default strategies for
selecting the solver if none is explicitly specified.

2.1 Eager Selection by Type

This is the selection mechanism implemented in Babelsberg/R. The
mechanism specifies which solver to use per class, ignoring any re-
lations between variables. To select a solver, the virtual machine
(VM) sends the for_constraint message to each variable value en-
countered during constraint construction. User code can add solvers
to the system by dynamically adding a for_constraint method
to those classes for which the solver is applicable, making use of
Ruby’s open classes. This method should return a solver-specific
variable wrapper object that implements a subset of the interfaces
that the solver can reason about. For example, the Cassowary solver
extends the Float class:

1 def for_constraint(name)
2 v = Cassowary::Variable.new(name: name, value: self)
3 Cassowary::SimplexSolver.instance.add_stay(v)
4 v
5 end

This method creates a new variable, adds implicit, low-priority stay
constraint (to instruct the solver not to change the variable value
unnecessarily, and returns the solver-specific variable object. The
VM’s solver object then sends messages to this object instead of the
Float object in the context of the constraint execution.

When executing a constraint expression, the system determines
the most specific dynamic types of each variable that it encoun-
ters. As long as no solver is selected for the current constraint, the
system sends a solver selection message to the object to ask which
constraint solver should be used for it. If the object does not under-
stand the message, this indicates that no solver declared that it can
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handle this type of object. If the object responds with a solver, the
constraint is immediately assigned to that solver. Any further vari-
ables that are encountered are now interpreted with this solver. If
they happen to be of a type that the solver can handle, they are nor-
mally represented as variables. If they are not, their current value
will be used as if it had been annotated as read-only in the constraint
expression. The solver will be able to use the value of the variable
but not write to it, but when the variable changes, the updated value
is passed to the solver.

If during the execution of the constraint expression no solver
is selected, the constraint is taken as-is: if it is already true,
no further action must be taken. When any of the variables that
participate in the constraint change, the expression is re-executed
using this same algorithm. If the expression returns false and
no solver is selected, it is treated as unsatisfiable. In either case, a
practical language should provide an appropriate warning to users,
informing them that no solver could be found for a constraint
involving the dynamic types that were encountered.

This selection algorithm is simple and fast. Constraints that deal
with few types can quickly be assigned to the correct solver. How-
ever, the algorithm is brittle for constraints that include multiple
types that each should be handled by a different solver. Consider
the following example:

1 s = "Hello"
2 n = 5
3 always { n == s.length() * 2 }
4 always { s.length() * 2 == n }
5 n = 10

Suppose we have a local propagation solver that can deal with
equalities over strings and numbers, but not arithmetic, and one that
can solver linear equations over reals, but does not support strings.
The two constraints in line 3 and 4 should be idempotent and it
should be irrelevant in which order they are defined or solved.

The first constraint will be handed to the linear arithmetic solver,
since we encounter the number n first during constraint construc-
tion mode (ccm). The solver will treat the string as a constant, and
is thus forced to use the return value of the method s.length()
to update n to 10. The second constraint will be handed to the lo-
cal propagation solver, since we encounter the string s first. The
constraint is already satisfied, so nothing needs to be done.

When we execute the assignment on line 5, the order in which
the solvers are called to solve these constraints matters. We must
first call the local propagation solver to update the string length. If
we call the linear arithmetic solver first, it will give up and treat the
constraint as unsatisfiable, since it cannot manipulate the string to
make it longer. This can lead to confusing cases where the system
will say a set of constraints is unsolvable, but a simple re-ordering
of operations in the constraint expressions will make it work.

2.2 Selection by Preference

This is the selection mechanism employed in Babelsberg/S [12]
and the original Babelsberg/JS implementation [7]. If the set of
constraints that two or more solvers can solve is not empty, it
may be desirable to always give preference to one solver over
another, to avoid issues where the solver surprisingly changes when
a constraint expression is refactored. To assign preferences, the
system maintains a list of solvers implicitly ordered by preference.
This list may be generated or supplied by the user. In either case,
the list of solvers should be created early in the execution of the
program and, once the first constraint has been created, it should
only be possible to append, not remove or re-order solvers.

Instead of executing the constraint expression just once, it is
executed in ccm once for each of the available solvers. The first
solver that is able to work with at least some of the variables

that participate in the constraint is selected and the constraint is
assigned to it. Executing the constraint expression multiple times is
safe due to our requirement on it being free of side-effects.

For the above example, suppose that the arithmetic solver is
preferred over the local propagation solver. In this case, both con-
straints will be assigned to it. This means, however, that the assign-
ment on line 5 now becomes unsatisfiable! While this may seem
like a strong restriction on the kinds of programs that can be written
in this manner, we consider it preferable over the potential surprise
that the two constraints above, even though they trivially express
the same equality, are assigned to different solvers. In this sce-
nario, the constraint system will always be unsatisfiable, regardless
of how we refactor the two constraint expressions. To make the pro-
gram work, the user should manually select the local propagation
solver in this case, or else re-order the solvers to give preference to
the local propagation solver at the beginning of the execution.

2.3 Heuristic Selection

Babelsberg/JS now implements some heuristics for solver selec-
tion. If no explicit solver was selected, the constraint is handed to
multiple solvers in parallel. In Babelsberg/JS, each solver can de-
clare capabilities, such as which types and operations it supports.
Based on an initial analysis of the types and operations encoun-
tered in the dynamic extent of the constraint expression, solvers are
filtered, and the remaining solvers all run to solve the constraint.
The solvers to finish without error are compared first for accuracy
of the result (which might be application specific) and then per-
formance to select the final solver. Currently, no further heuristics
are implemented, but the order of the trade-off (performance versus
accuracy) can be swapped by the user.

The preferential solver selection presented before is already
heuristic: it selects the first solver that can work with at least some
of the variables that participate in the constraint. This heuristic is
easily extended. An obvious extension is to select the first solver
that can deal with the most variables, and go by preference only in
case of a tie. There are more such extensions that make sense in
this decision procedure. As described above, there may be solvers
that have exactly the same capabilities, and that only differ in their
performance or in the quality of their results.

Some of the solvers’ properties, such as performance and the
quality of the result, can be determined automatically. For others,
this solver selection procedure requires solvers to come annotated
with capabilities, such as the types and operations it supports, for
which theories it is complete or incomplete, or whether it supports
finite as well as infinite domains.

A simple example, which the preferential selection can already
decide, is a constraint on two strings and the choice between a finite
domain solver and an local propagation solver:

1 x = "Good Morning"
2 y = "G’day"
3 always { x = y }

We can tell from the types that the simplex solver will not be able
to find a solution to this constraint and that we should pick the local
propagation solver.

However, even a slightly more complex example may make
our decision much more difficult. Suppose we hand the following
constraint over the reals to both a simplex solver like Cassowary
and a relaxation solver:

1 a = 2.0
2 b = 2.0
3 always { a * a = b }

Again reject the simplex solver, this time because it is not equipped
to deal with non-linear equalities. The relaxation solver, on the
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other hand, approximates a solution to this constraint by lineariz-
ing it, but it would be an approximation only. More worrisome is
that the solving algorithm can diverge, so even if this constraint can
be solved once, it may not be possible if we change either a or b
too much in one step. Suppose a relaxation solver approximates the
solution a 7→ 2.0 and b 7→ 3.9999999999998 for the above con-
straint; because the relaxation method using numerical approxima-
tion, it is prone to round-off errors. If we have a solver like Z3 avail-
able, we might want to select it instead, both for higher precision,
and because the solving theory is more robust (albeit not complete)
for non-linear arithmetic over the reals. However, Z3 may pick an-
other (valid) solution a 7→ 1.4 and b 7→ 1.96. This solution means
that the sum of the changes to the variables is smaller than with
the relaxation method, but for some applications, we may prefer a
solution which modifies the least number of variables instead.

Our heuristic selection attempts to weigh these different crite-
ria. As in the selection by preference, we execute the constraint
expression once for solver, and in addition we let each solver solve
the constraint once, but without updating the environment and heap
with the solution. Using the preference and the below heuristics in
conjunction, we can then select the best solver and add the con-
straint to it. As constraints are added, we regularly re-evaluate the
metrics for existing constraints to check if they should be moved for
better performance or better results. Similarly, when a constraint
becomes unsatisfiable, but the current solver is annotated as being
incomplete, we also re-evaluate the metrics to search for another
solver.

Precision As an example, Cassowary is complete for linear
equalities over reals, but its implementation uses float values to
represent reals, so a concrete solution may suffer from round-off
errors. Similarly, although the Z3 real theory works on reals of ar-
bitrary precision, these reals will be represented in many languages
as finite-precision floating point numbers, so again round-off errors
may occur. The precision of the results these solvers produce may
thus differ in practice, and could be considered as part of the solver
selection.

Variable Changes Another property that may impact the quality
of the solution is how the solver implementation affects the selec-
tion of solutions when multiple solutions are available. Although
stay constraints are part of the semantics to ensure that any solution
is close to the previous state of the system, there are often multiple
possible solutions that satisfy this property. Which solution is se-
lected is usually an artifact of the solver implementation. However,
problems such as the split-stay problem may make some solutions
still more desirable than others, and solvers which avoid it may
be preferable over those that do not. Similarly, solvers that change
multiple variables, but achieve a small squared distance from the
previous state of the system may be more or less suited to a partic-
ular problem than those that change few variables, but those by a
larger amount.

Dimensionality Besides the types of variables, the operations on
them and how they are connected also play a role. Cassowary
can only solve linear equations, while a relaxation solver can find
solutions for higher dimensional arithmetic. Thus, the operations
and associated operands within a constraint expression must be
considered to select the solver.

Completeness Another issue arises with incomplete theories.
SMT solvers, for example, require the different partial solvers
within to be convex for the decision procedure to be complete.
For example, the theory (Z,+,=) (addition and equality over the
whole numbers) is convex, but (Z,+,≤) is not — a constraint in-
volving inequalities over the integers may be satisfiable for a spe-
cific set of values, but another set of values may make it simply

too hard for the solver. In that event, another solver (e. g., using a
form of relaxation) may be able to approximate a solution and the
constraint should be moved to that solver.

Performance Depending on the implementation, solvers may
differ significantly in both base performance and complexity in
required memory as well as time. As constraints are added during
the execution of a program, a solver that is fast for few constraints
may, due to higher complexity, become slower than a constraint
with worse base performance but better complexity. A selection
algorithm can take into account how fast a solver was able to
satisfy a constraint, and continues to monitor solvers to notice
drops in performance when constraints are added.

Each of these mechanisms has proven useful in practice to help
developers not familiar with constraint solvers to use constraints in
Babelsberg. When they do not work, however, the resulting confu-
sion can impede development. Regardless of the chosen strategy,
we believe that communicating the strategy and how the system ar-
rived at a selection of solvers for a particular constraint is key to
making them useful.

3. Fast Incremental Constraint Solving

Performance of the solving algorithm itself is important for
Babelsberg languages. This is particularly apparent when few vari-
ables change with high frequency and constraints have to re-
satisfied in response, for example, when a graphical object should
follow the mouse cursor.

Not all constraint solvers are developed to provide good perfor-
mance for interactive applications, being used primarily for proof-
ing or model finding [4]. However, of the ones that are used inter-
actively, some solvers have explicit support for re-solving in case
of state changes with good performance. To that end, Freeman-
Benson, Maloney, and Borning introduce the notion of edit con-
straints and incremental re-satisfaction [11]. Their work is based on
the observation that user input is usually restricted to modify only
small parts of the constraint graph at a time, for example modify-
ing 2d coordinates when moving the mouse or modifying a string
by entering one character at a time.

Both DeltaBlue and Cassowary treat stay and edit constraints
specially, allowing very fast incremental re-satisfaction of a collec-
tion of constraints as new edit values stream into the system (and
the weak stay constraints provide basic stability). For DeltaBlue,
this involves pre-calculating the execution plan from the edit vari-
ables. For Cassowary, the Simplex tableau is set up so that it
can be efficiently re-optimized given new values for the edit vari-
ables. Unfortunately, at least for Cassowary, preparing the solver
for fast incremental re-solving of a few variables requires some
re-organization of the tableau, and solving for other variables also
becomes slower as a result. This requires developers to anticipate
whether a variable will only change more or less often, and use the
appropriate interface if they want to achieve the best performance.

The edit method provided as part of Babelsberg/R adds edit
constraints and repeatedly updates them with values from a stream
running in a separate thread. In Babelsberg/JS, to support edit
constraints within a single thread, the edit method returns a callback
to input new values into the solvers, rather than taking a stream of
values. Babelsberg/S currently does not support edit constraints.

Since the language design supports cooperating solvers, the
solvers have to provide a specific edit constraint application pro-
gramming interface (API). If a variable is added to an edit con-
straint, but we dynamically discover that it is used in a solver which
does not support the edit constraint API, a runtime exception is gen-
erated. Upon calling the edit method, the following methods are
called on the solvers and the supplied variables, in order:
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prepareEdit is called on each solver variable. In this method,
variables can prepare themselves for editing. In Cassowary,
for example, this would call the addEditVar method on the
solver with the variable as argument. For DeltaBlue, this creates
an EditConstraint on the variable and adds it to the list of
constraints.

beginEdit is called once for each solver participating in the edit
before the callback is returned. In Cassowary, this initializes
the edit constants array and prepares the solver for fast re-
solving when these constants change. In DeltaBlue, the solver
generates an execution plan to solve the constraints starting with
the EditConstraints as input.

resolveArray is used to supply each solver with the new values
and update the object’s storage (so other observers and hooks
around the values still work). Because the solver’s execution
plan is fixed for the duration of an edit, we disallow creating
new edit callbacks before the current edit has finished. When
new constraints are created, the execution plan may also be-
come invalid, but we do not enforce invalidating the edit call-
back in this case.

finishEdit is sent to each solver variable when the edit stream
ends or the callback is called without arguments. Cassowary
variables do nothing here, DeltaBlue variables remove their
EditConstraints from the solver.

endEdit is called once for each solver to reset the solver state.

To use, for example, Cassowary as the solver, all edit variables
must be Floats (e. g., the x and y values of a point), but we also want
to do this in an object-oriented way that respects encapsulation. To
support this, the client passes an array of method names for the
return values that should be updated in the edit constraint (e. g.,
x and y for a point — those values may be calculated or direct
accessors). The system creates fresh edit variables, and adds an
equality constraint to the return values of the methods. Thus, the
internal storage layout of the class is not visible to the programmer
from outside the object, because the equality constraint is simply
asserted on the results of message sends using the always primitive.

In the following example, the mouse locations or the mouse
point might store their x and y values directly, or might be points
represented using polar coordinates. In either case, the edit con-
straints apply to the return values of their respective x and y meth-
ods:

1 edit(stream: mouse.locations.each,
2 accessors: [:x, :y]) { mouse_point }

In a DeltaBlue-specific edit method, the edit constraints re-
turned could be simpler, since DeltaBlue local propagation methods
can apply to user-defined objects such as points, not just to floats.
The point would be simply updated rather than dealing with its x
and y coordinates separately, and the data flow plan would update
the objects constrained to be equal to the point that represents the
mouse location.

Benchmark Results

To quantify the impact of edit constraints, we used an example from
Kaleidoscope’93 [15] and adapted it to our Babelsberg implemen-
tations. In this example, the user drags the upper end of the mercury
in a thermometer using the mouse. However, the mercury cannot go
outside the bounds of the thermometer, even if the user tries to drag
it out. Additionally, a gray and white rectangle on the screen should
be updated to reflect the new mercury position, and a displayed
number should reflect the integer value of the mercury top. Refac-
toring the imperative version for Babelsberg makes it more general,
so the comparison is biased towards the imperative code. However,

this example demonstrates the performance impact if an imperative
program is refactored with the goal to make it more readable, not
more general.

Note that the object-constraint version may be written in two
ways: one that is more like the imperative version and assigns new
mouse locations in a loop; and a more constraint-oriented version
that declares mouse.location_y as an edit variable that triggers
incrementally re-satisfying the constraints. The latter is expected
to be much faster, as Cassowary can just re-optimize a previously
optimal solution.

In this set of benchmarks we only include Babelsberg/R and
Babelsberg/JS, since we did not implement edit constraints in
Babelsberg/S. The results are presented in Figure 1. The bench-
marks were run on an otherwise idle Ubuntu 14.10 system using an
Intel i5-2520M CPU forced to a constant clockspeed of 2.5 GHz
with 16 GB of RAM. Benchmarks were run a varying amount of
iterations (given in the charts) depending on the benchmark, and
each benchmark run was repeated ten times, with the mean and
standard deviation shown in the results where appropriate.

For both implementations, the hand-coded imperative version
is clearly the fastest. However, it is also the longest, hardest to
understand, and hardest to prove correct. It is also clear that the
purely declarative versions are generally too slow to be used in an
interactive application: in both cases, the system could re-satisfy
constraints less than once per second, which is not enough to
smoothly follow mouse movement and update the screen. Although
using edit constraints is still an two to three orders of magnitude
slower than pure imperative code, it is fast enough to re-satisfy
constraints in an interactive application and still provide smooth
display updates.

4. Automatic Edit Constraints

We have shown in Section 3 that edit constraints can significantly
improve the performance of constraint solving and in some cases
make the use of constraint solving feasible in the first place. How-
ever, using edit constraints directly requires developers to know
about them, understand where they are useful, and to adapt the
source code to create edit constraints.

Automatic edit constraints (just like our integration of state and
object-oriented behavior with constraint declaration, or the archi-
tecture for cooperating solvers and solver selection heuristics) sup-
port the goal of Babelsberg to make constraints a useful tool for
developers not familiar with constraint solvers. Rather than re-
quiring object-oriented (OO) developers to learn about incremen-
tal solvers, in Babelsberg we have added heuristics for two solvers,
DeltaBlue and Cassowary, to recognize variables that change fre-
quently and use automatically apply incremental re-satisfaction to
speed up solving.

The solving process of DeltaBlue when a variable is assigned
involves creating a new equality constraint, creating an execution
plan, executing that plan to solve the constraints, and finally to
remove the equality constraint and the associated plan. As a simple
optimization heuristic, we can keep the last n equality constraints
and plans in a cache; if one of the n variables changes again, we can
just update the equality constraint and re-use the execution plan,
rather than re-creating it.

For Cassowary, the simplex tableau has to be prepared for incre-
mental re-solving, and all variables that will be assigned have to be
known beforehand. This preparation is potentially slow, and it is not
possible with the implementation of the algorithm to keep multiple
optimized versions of the tableau around. Thus, the heuristic we
use for Cassowary is more akin to a JIT: for each variable known to
Cassowary, we keep a counter that tracks how often the variable has
been assigned recently. In regular intervals, we check which n vari-
ables were assigned to most frequently, and optimize the tableau
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Figure 1: A comparison of constraint solving performance for hand-coded imperative solving, Babelsberg-style solving through
assignment, and Babelsberg with edit constraints. Numbers show how many re-solving operations can be executed per second (more
is better).

for changes coming from those variables. At the same time, we
“decay” the counters either by a fixed percentage or value. This
ensures that variables that have been assigned to a lot in the past,
but not much in the recent history of the program, are no longer
considered for incremental re-satisfaction.

Benchmark Results

We present two sets of benchmarks, one each for DeltaBlue and
Cassowary, in Figure 2. In our benchmarks, we measure a chain
of variables that should be equal to a fixed sum, a horizontal
drag of a slider where only one variable changes, a mouse drag
where two variables changes alternate, a mouse drag where one
dimension changes more frequently than the other, and finally a
mouse drag where each dimension changes five times, and then the
other changes five times.

For DeltaBlue, the best heuristic is to keep the last edit con-
straint, in a strategy we call Last JIT. At any time, if there is no
current edit constraint, we create one. If the current edit constraint
is for another variable, we throw the old one away and create the
new one. This implementation could easily be extended to cache
the last n edit constraints, rather than just the last one. However,
even as it is, we can see in our benchmark that this heuristic is al-
most always as fast as writing edit constraints directly, and is never
slower than not using edit constraints.

For Cassowary, we include three heuristics with Babelsberg: the
Classic JIT strategy decays counters and changes or creates edit
constraints in fixed intervals. A second strategy, Additive Adaptive,
increments the interval any time the most frequently used variable
did not change, and decrements the interval any time it did. Thus,
when an edit constraint is well chosen and can stay in effect for a
long time, we reduce the overhead of checking and decaying coun-
ters linearly with time. A third strategy, Multiplicative Adaptive,
modifies this behavior and, rather than incrementing or decrement-
ing the interval, it multiplies or divides the interval by two. This
has the advantage that we can avoid re-checks for longer periods of
time if the edit constraint stays in effect.

Our benchmarks show that all our heuristics are faster than
using no edit constraints at all. The adaptive strategies generally
work better than the Classic JIT strategy, and by default we use the
Additive Adaptive strategy, but the developer can select a different
strategy manually.

5. Related Work

There is some related work for automatic solver selection in
other constraint programming systems. Both Sketchpad [22] and

ThingLab [2] used the same three hard-wired solvers (a relaxation
solver, propagation of degrees of freedom, and local propagation).
However, since the list of solvers was fixed and their capabilities
have little overlap, the selection algorithm did not need to be gen-
eral. Similarly, the Kaleidoscope [15] and Turtle [13] constraint-
imperative programming systems only had a fixed set of low-level
constraint solvers, and a fixed algorithm for calling user-defined
solving methods.

SMT solvers like Z3 [4] include many different solving strate-
gies for different types of problems and use a standard algorithm
to have these strategies cooperate. However, most SMT solvers re-
quire manual selection of the solving strategy if performance or
solution quality is important and only use a fixed, generic strategy
based on type heuristics otherwise.

Lighthouse [21] is a system for selecting the fastest constraint
solver for a given problem. The system itself is designed to support
different heuristics and its general direction is thus similar to our
heuristics-based solver selection. However, Lighthouse is a sepa-
rate tool to aid high-performance computing application developers
during development, whereas we propose at least a limited form of
automatic solver selection to be used at runtime.

We are not aware of work that applies just-in-time techniques to
constraint solvers, but there is a large body of work in scientific
computing to pre-select optimized sparse matrix kernels for use
by linear solvers to optimize performance in HPC systems such
ATLAS [26], OSKI [25], SALSA [5], and many more. The major
difference to our approach and goals are that these systems are all
targeted towards HPC applications. In these applications analysis
and tuning may take a long time (and is usually done before the
actual computation). In Babelsberg, on the other hand, recognizing
the conditions for edit constraints and applying them has to happen
at runtime and is thus subject to the same issues as traditional JITs
that must weigh the performance gain of an optimization against
the performance impact of analyzing and enabling it.

6. Conclusions

We have presented the different implementation approaches for au-
tomatic solver selection used in the Babelsberg implementations
and how they can aid imperative developers employ constraint solv-
ing successfully. In addition, we have presented a novel application
of JIT-techniques to incremental re-solving in the DeltaBlue and
Cassowary constraint solvers which in many cases can offer one
order of magnitude performance improvements over a naïve for-
mulation of the constraints, and often comes close the performance
of manually applied edit constraints.
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Figure 2: Combinations of benchmarks and automatic edit constraint JITs. Graph shows execution time required for 500 solving
operations (less is better).

For the automatic selection, in practice we have found a mix-
ture of manual and eager selection to produce good results once the
user has a basic understanding of the available solvers and is aware
of the eager selection process (in particular, how seemingly idem-
potent refactorings may lead to different results). We have found
that while preferential selection avoids some surprising behavior,
this behavior occurs rarely in practice. The heuristic solver selec-
tion procedure, although very powerful, has strong drawbacks: its
complexity impacts the performance of creating new constraints,
and requires constant re-checking. As with any heuristic, the re-
sults also depend on the weight that is given to each of the metrics
and may need to be adjusted depending on the application domain.
An educational advantage, however, is that practical implementa-
tions can use the metrics to communicate to the user the selection
process and increase the user’s understanding of the capabilities
and limits of available constraint solvers. As a guideline to imple-
menters, we suggest using the heuristic procedure as an educational
tool and guiding instrument at development-time, but revert to man-
ual and eager selection when many constraints are added dynami-
cally throughout the run-time of the program, to avoid the perfor-
mance overhead of the selection procedure.

In future work, we plan to extend the heuristics in the practical
implementations and provide more principled criteria based on our
practical experience for using a specific selection strategy, and for
weighing the different heuristics against one another.

Regarding our automatic edit constraints, more work is required
to determine good heuristics for selecting the appropriate JIT strat-
egy in many cases. However, we argue that the work presented here
is a good first step in the direction of improving solver performance,
and has applications outside of the domain of object-constraint pro-
gramming languages.
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