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Abstract - Over the past few years OMG CORBA 
implementations have matured. Consequently, 
organizations are now developing sophisticated 
distributed applications based on OMG standards. 
Many of these applications may be characterized 
as being multi-language implementations, running 
as multiple interdependent processes within a 
multi-vendor hardware and software environment. 
While ORB vendors address the development of 
such applications, there are still challenges in 
organizing and deploying them. This paper 
discusses an approach to organize distributed 
applications dynamically, based on a subset of the 
Distributed Processing Environment specification 
of the Telecommunications Information Network 
Architecture Consortium. 

• 
• 
• 
• 

I. INTRODUCTION 

Most of today’s CORBA-based distributed systems 
may be characterized as multiple language implemen-
tations, running as multiple interdependent processes 
on multiple hardware platforms within multiple ven-
dor environments [1]. This complexity is one of the 
main reasons that organizations have difficulties in 
organizing and deploying such systems. 

This paper presents an environment that helps to 
deal with these complexities. It will show how to or-
ganize, package, map, deploy, monitor and evolve a 
CORBA-based system using a subset of the Distrib-
uted Processing Environment specification of the 
Telecommunications Information Network Architec-
ture Consortium (TINA-C) [2, 3, 4, 9]. 

II. THE DYNAMIC ENVIRONMENT 

The environment that implements the concepts dis-
cussed in this contribution is called Aero [6, 7, 8]. 
Aero includes two main parts – the Distributed Sys-
tem Schema repository (DSS), and a Distributed 
Processing runtime Environment (DPE). 

The DSS holds meta-information about several as-
pects of a distributed application: 

its logical organization, 
its physical arrangement, 
its target hardware environment, and 
its service deployment status. 

This meta-representation enables a system adminis-
trator to deploy, monitor and control the application 
services and environment at runtime. Input to the DSS 
may be specified in OMG IDL, ODMG ODL, and 
TINA ODL definition languages, in addition to a 
number of supplied graphical user interfaces. The 
DSS is used to manage the specifications and to pro-
duce implementation skeletons in Java, Smalltalk, and 
C++ according to standard language bindings (
) [5]. 
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Figure 1: Meta-Object Repository 
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One advantage of the DSS meta-model is that new 
languages may be supported in future without disturb-
ing the contents of the repository. 

The DPE consists of programming language spe-
cific frameworks and operating system specific com-
ponents that allow deployment and management of 
applications represented within the DSS. These in-
clude language-specific implementations of interface, 
object, group, and capsule artefacts that are installed 
with each application component. The DPE has a 
daemon process that runs on each system hardware 
node. This process communicates with the DSS and 
acts as its agent on the target platform. 

The DSS and the DPE work together in a network to 
manage deployment, monitoring and migration of 
these applications. The Aero environment supports 
the following capabilities: 
• 
• 

• 

Representation of system/service organization, 
Generation of implementation skeletons and cus-
tomized frameworks, 
Modelling of platform and network organization, 



• 

• 
• 
• 

Installation, activation, and shut down of service 
components, 
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Monitoring of operational status, 
Capsule and service restart for failure recovery, 
Graceful system evolution. 

A. Representing System and Service Organization 

The Aero DSS contains meta-information that re-
flects both the logical and the physical organization of 
distributed applications. Its Interface Repository is 
used to maintain information about the interfaces, 
objects, and groups that have been defined for appli-
cations ( ). This information is available at 
runtime to provide insight into the logical structure of 
the application system. 

Figure 2

Figure 2: Groups, Objects, and Interfaces 
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Aero’s Service Repository contains additional meta-
information that represents the physical packaging 
decisions that have been made for deploying applica-
tions. Services are represented by a single root group 
construct (the service group), and that group may con-
tain sub-groups. Each group may be packaged into a 
different deployment unit, and thus execute in a sepa-
rate process at run-time. Services are defined in terms 
of sets of such deployment packages. Currently a de-
ployment package may be written in the Java, Small-
talk, or C++ programming languages. 

B. Generation of Implementation Code 

Once packaging decisions have been made, the In-
terface Repository is used to generate implementation 
code in the desired programming languages ( ). Figure 3

Figure 3: Code Generation 

 

Each supported language includes runtime code 
frameworks that provide the basis of application-
specific group, object, and interface implementations. 
The skeletons that are generated customize these enti-
ties as defined by the logical structure of the applica-
tion ( ). Figure 4

Figure 4: Frameworks and Generated Code 
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Completed deployment packages are prepared by 
integrating the generated code with implementations 
provided by developers. 

These packages and any associated files are then en-
tered into the Service Repository so that they may be 
automatically deployed. Service packages are charac-
terized by their host platform, operating system, net-
works and other required properties of the deployment 
host. By compiling equivalent packages for different 
host environments, the selection of appropriate pack-
ages for different types of deployment platforms may 
be automated. 

C. Modelling the Deployment Environment 

Aero’s Node Repository contains a set of references 
to daemon processes that reside on each target node. 
Information is maintained by each such process to 
allow the correct package to be selected for installa-
tion during deployment. 
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Figure 5: Deployed and Managed Service 

Figure 5

Each daemon is responsible for managing local 
packages for its installed components, for spawning 
capsule processes under the direction of the DSS, and 
for subsequent monitoring and restart of those capsule 
processes ( ). 

D. Service Mappings and Deployment 

In order to deploy a service thus modelled, each of 
its component packages must be mapped to an execu-
tion node ( ). The Aero Mapping Repository 
has a user interface that allows this information to be 
specified separately for each instance of each service 
to be deployed. Once all required packages have been 
so mapped, the Mapping Repository can automate the 
installation, start-up, instantiation, and shutdown of 
services with no further human intervention. 

Figure 6

Figure 6: Service Packaging and Mapping 
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Service instantiation involves messaging among the 
service’s capsules to cause the creation and registra-
tion of groups, objects and interfaces within the group 
trading hierarchy. Aero’s generated groups utilize the 
trading attributes of defined interfaces to register them 
within their local group. Contracts declared in the 
group definitions then determine how far up the trad-
ing hierarchy each traded interface reference is propa-
gated. Clients desiring an interface of a particular type 
submit requests to their local group (representing a 
local trading access point) and these requests propa-
gate upward until they are satisfied at the appropriate 
level in the group/trader hierarchy (Figure 7). 

 

Figure 7: Group Hierarchy and Traded References 

E. Service Monitoring and Restart 

Once the packages that comprise a service have 
been installed and activated by the Mapping Reposi-
tory, each node daemon can be configured to auto-
matically poll the capsule processes to detect failures 
at the network, process or application levels. Detec-
tion of capsule failure can then result in the automatic 
restart of the package. 

If the service has already been instantiated, then 
groups, objects and interfaces of related components 
that are running in other capsules may hold object 
references into the failed capsule. These references 
are encapsulated by Aero Locators that trap distribu-
tion-related errors and contain trading information 
sufficient to re-acquire new references to traded inter-
faces. Similarly, Aero group implementations are de-
signed to purge references to interfaces that become 
unavailable due to capsule failures. 

Once a capsule has been restarted after a failure, 
new entities are instantiated within it and other cap-
sules have an opportunity to take additional corrective 
actions. The result is a service group structure that 
spans multiple process capsules and heals itself after 
capsule failures. 

III. SERVICE EVOLUTION 

Aero’s Mapping Repository is fully dynamic, allow-
ing new packages to be mapped and deployed without 
shutting down the whole service. This capability can 
be used to add redundant groups, to move capsules 
from host to host, and to otherwise alter the deploy-
ment characteristics of the service. Aero’s full reflec-
tive knowledge of the deployed service is essential for 
tracking the interdependencies between deployed 
components. 

Graceful evolution of a deployed service in the face 
of change utilizes many of the same mechanisms. 
New versions of packages need to be mapped and 
installed, new capsules need to be activated and the 



trading structure needs to be adjusted to make the new 
object implementations available. Once new groups 
have been instantiated and the group structure has 
been adjusted to include them, the old capsules can 
simply be terminated. The client’s error recovery 
mechanisms will correctly reacquire new traded inter-
faces and minimal interruption will be perceived. 

IV. SUMMARY 

This paper has illustrated the organization and de-
ployment of complex CORBA-based systems. It em-
ploys a realization of some of the TINA-C Distributed 
Processing Environment concepts and languages that 
have been implemented in an environment called 
Aero. This environment supports the following capa-
bilities: 
• 

• 

• 
• 
• 

• 
• 

Representation of system/service organization in 
language-neutral terms. 
Generation of implementation skeletons and cus-
tomized frameworks. 
Modelling of platform and network organization. 
Management of component interdependencies. 
Installation, activation, and shut down of service 
components. 
Monitoring of operational status. 
Component restart for failure recovery and sys-
tem evolution. 

The Aero DPE has been characterized as being in 
‘Operational Compliance’ with TINA with respect to 
the TINA Computing Architecture [10, 11]. It has 
proven the practicality of the ideas and concepts be-
hind the TINA Distributed Environment specification. 
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