
Supporting Services in a Dynamic Distributed Computing Environment

Jeff Eastman#, Robert Hirschfeld*, Matthias Wagner*, Hendrik Berndt*
Windward Solutions, Inc.

1081 Valley View Ct., Los Altos, CA 94024, USA
* DoCoMo Communications Laboratories GmbH

Landsberger Strasse 308-312, 80687 Munich, Germany

Abstract - Over the past few years OMG CORBA
implementations have matured. Consequently,
organizations are now developing sophisticated
distributed applications based on OMG standards.
Many of these applications may be characterized
as being multi-language implementations, running
as multiple interdependent processes within a
multi-vendor hardware and software environment.
While ORB vendors address the development of
such applications, there are still challenges in
organizing and deploying them. This paper
discusses an approach to organize distributed
applications dynamically, based on a subset of the
Distributed Processing Environment specification
of the Telecommunications Information Network
Architecture Consortium.

•
•
•
•

I. INTRODUCTION

Most of today’s CORBA-based distributed systems
may be characterized as multiple language implemen-
tations, running as multiple interdependent processes
on multiple hardware platforms within multiple ven-
dor environments [1]. This complexity is one of the
main reasons that organizations have difficulties in
organizing and deploying such systems.

This paper presents an environment that helps to
deal with these complexities. It will show how to or-
ganize, package, map, deploy, monitor and evolve a
CORBA-based system using a subset of the Distrib-
uted Processing Environment specification of the
Telecommunications Information Network Architec-
ture Consortium (TINA-C) [2, 3, 4, 9].

II. THE DYNAMIC ENVIRONMENT

The environment that implements the concepts dis-
cussed in this contribution is called Aero [6, 7, 8].
Aero includes two main parts – the Distributed Sys-
tem Schema repository (DSS), and a Distributed
Processing runtime Environment (DPE).

The DSS holds meta-information about several as-
pects of a distributed application:

its logical organization,
its physical arrangement,
its target hardware environment, and
its service deployment status.

This meta-representation enables a system adminis-
trator to deploy, monitor and control the application
services and environment at runtime. Input to the DSS
may be specified in OMG IDL, ODMG ODL, and
TINA ODL definition languages, in addition to a
number of supplied graphical user interfaces. The
DSS is used to manage the specifications and to pro-
duce implementation skeletons in Java, Smalltalk, and
C++ according to standard language bindings (
) [5].

Figure
1

Figure 1: Meta-Object Repository

MetaObject
Repository

OMG-IDL
System

Specification

ODMG-ODL
System

Specification

TINA-C-ODL
System

Specification

MetaObject
Repository
MetaObject
Repository
MetaObject
Repository

OMG-IDL
System

Specification

OMG-IDL
System

Specification

ODMG-ODL
System

Specification

ODMG-ODL
System

Specification

TINA-C-ODL
System

Specification

TINA-C-ODL
System

Specification

Smalltalk
System

Codeframes

Smalltalk
System

Codeframes

Java
System

Codeframes

Java
System

Codeframes

C++
System

Codeframes

C++
System

Codeframes

One advantage of the DSS meta-model is that new
languages may be supported in future without disturb-
ing the contents of the repository.

The DPE consists of programming language spe-
cific frameworks and operating system specific com-
ponents that allow deployment and management of
applications represented within the DSS. These in-
clude language-specific implementations of interface,
object, group, and capsule artefacts that are installed
with each application component. The DPE has a
daemon process that runs on each system hardware
node. This process communicates with the DSS and
acts as its agent on the target platform.

The DSS and the DPE work together in a network to
manage deployment, monitoring and migration of
these applications. The Aero environment supports
the following capabilities:
•
•

•

Representation of system/service organization,
Generation of implementation skeletons and cus-
tomized frameworks,
Modelling of platform and network organization,

•

•
•
•

Installation, activation, and shut down of service
components,

TINA
ODL

CORBA
IDL

ORB
Code

DPE
Code

Service
Code

Interface
Repository

IDL
Compiler

Service
Group

Object Model

Domain Objects Computational Objects

Object

Object

• Groups
• Objects
• Interfaces
• Locators

• Stubs
• Skeletons• Documentation

• Class Skeletons

TINA
ODL

CORBA
IDL

ORB
Code

DPE
Code

Service
Code

Interface
Repository

IDL
Compiler

Service
Group

Object Model

Domain Objects Computational Objects

Object

Object

Service
Group

Object Model

Domain Objects Computational Objects

Object

ObjectObject

• Groups
• Objects
• Interfaces
• Locators

• Stubs
• Skeletons• Documentation

• Class Skeletons

Monitoring of operational status,
Capsule and service restart for failure recovery,
Graceful system evolution.

A. Representing System and Service Organization

The Aero DSS contains meta-information that re-
flects both the logical and the physical organization of
distributed applications. Its Interface Repository is
used to maintain information about the interfaces,
objects, and groups that have been defined for appli-
cations (). This information is available at
runtime to provide insight into the logical structure of
the application system.

Figure 2

Figure 2: Groups, Objects, and Interfaces

<<group>>
DpeGroup

<<object>>
DpeObject

<<interface>>
DpeInterface

components [1..n]

user-defined
CORBA-IF

manager [0..1]

group [1]

object [1]

supports [0..n]

requires [0..n]

contracts [0..n]

serviceGroup [1]

Service

Aero’s Service Repository contains additional meta-
information that represents the physical packaging
decisions that have been made for deploying applica-
tions. Services are represented by a single root group
construct (the service group), and that group may con-
tain sub-groups. Each group may be packaged into a
different deployment unit, and thus execute in a sepa-
rate process at run-time. Services are defined in terms
of sets of such deployment packages. Currently a de-
ployment package may be written in the Java, Small-
talk, or C++ programming languages.

B. Generation of Implementation Code

Once packaging decisions have been made, the In-
terface Repository is used to generate implementation
code in the desired programming languages (). Figure 3

Figure 3: Code Generation

Each supported language includes runtime code
frameworks that provide the basis of application-
specific group, object, and interface implementations.
The skeletons that are generated customize these enti-
ties as defined by the logical structure of the applica-
tion (). Figure 4

Figure 4: Frameworks and Generated Code

Object Request Broker (ORB)

Distributed Processing Environment

Service Frameworks

ORB
Code

Service Code

DPE Code

Java Virtual Machine

Object Request Broker (ORB)

Distributed Processing Environment

Service Frameworks

ORB
Code

Service Code

DPE Code

Java Virtual Machine

Completed deployment packages are prepared by
integrating the generated code with implementations
provided by developers.

These packages and any associated files are then en-
tered into the Service Repository so that they may be
automatically deployed. Service packages are charac-
terized by their host platform, operating system, net-
works and other required properties of the deployment
host. By compiling equivalent packages for different
host environments, the selection of appropriate pack-
ages for different types of deployment platforms may
be automated.

C. Modelling the Deployment Environment

Aero’s Node Repository contains a set of references
to daemon processes that reside on each target node.
Information is maintained by each such process to
allow the correct package to be selected for installa-
tion during deployment.

<<group>>
theGlobalGroup

<<object>>
anObjectA

<<interface>>
anInterfaceA

<<group>>
aGroupB

<<group>>
aGroupA

<<object>>
anObjectB

<<interface>>
anInterfaceC

<<interface>>
anInterfaceD

<<interface>>
anInterfaceB

<<interface>>
anInterfaceE

Aero
DSS

Node
Mgr

Capsule

Capsule

Object

Object

Object

Object

Object

Group

Group

Group
Global
Group

Service
Admin

UI

Node
Mgr

Capsule

Capsule

Group

Group

Group

Object

Object

Object

Object

Object

Node
Mgr

Capsule

Capsule

Group

Group

Group

Object

Object

Object

Object

Object

Node
Mgr

Capsule

Capsule

Group

Group

Group

Object

Object

Object

Object

Object

Node
Mgr

Capsule

Capsule

Group

Group

Group

Object

Object

Object

Object

Object

Node
Mgr

Capsule

Capsule

Group

Group

Group

Object

Object

Object

Object

Object

Node
Mgr

Capsule

Capsule

Group

Group

Group

Object

Object

Object

Object

Object

Figure 5: Deployed and Managed Service

Figure 5

Each daemon is responsible for managing local
packages for its installed components, for spawning
capsule processes under the direction of the DSS, and
for subsequent monitoring and restart of those capsule
processes ().

D. Service Mappings and Deployment

In order to deploy a service thus modelled, each of
its component packages must be mapped to an execu-
tion node (). The Aero Mapping Repository
has a user interface that allows this information to be
specified separately for each instance of each service
to be deployed. Once all required packages have been
so mapped, the Mapping Repository can automate the
installation, start-up, instantiation, and shutdown of
services with no further human intervention.

Figure 6

Figure 6: Service Packaging and Mapping

<<group>>
DpeGroup

ServiceAssembly

requires [0..n]

factories [1..n]

represents [1]

serviceGroup [1]

Service ServiceDeployment

ServicePackage PackageMap

assembles [1..n] deploys [1..n]

Property

maps [1]

maps [1]

SystemNode

mapsTo [1]

requiredProperties [1..n] properties [1..n]

Service instantiation involves messaging among the
service’s capsules to cause the creation and registra-
tion of groups, objects and interfaces within the group
trading hierarchy. Aero’s generated groups utilize the
trading attributes of defined interfaces to register them
within their local group. Contracts declared in the
group definitions then determine how far up the trad-
ing hierarchy each traded interface reference is propa-
gated. Clients desiring an interface of a particular type
submit requests to their local group (representing a
local trading access point) and these requests propa-
gate upward until they are satisfied at the appropriate
level in the group/trader hierarchy (Figure 7).

Figure 7: Group Hierarchy and Traded References

E. Service Monitoring and Restart

Once the packages that comprise a service have
been installed and activated by the Mapping Reposi-
tory, each node daemon can be configured to auto-
matically poll the capsule processes to detect failures
at the network, process or application levels. Detec-
tion of capsule failure can then result in the automatic
restart of the package.

If the service has already been instantiated, then
groups, objects and interfaces of related components
that are running in other capsules may hold object
references into the failed capsule. These references
are encapsulated by Aero Locators that trap distribu-
tion-related errors and contain trading information
sufficient to re-acquire new references to traded inter-
faces. Similarly, Aero group implementations are de-
signed to purge references to interfaces that become
unavailable due to capsule failures.

Once a capsule has been restarted after a failure,
new entities are instantiated within it and other cap-
sules have an opportunity to take additional corrective
actions. The result is a service group structure that
spans multiple process capsules and heals itself after
capsule failures.

III. SERVICE EVOLUTION

Aero’s Mapping Repository is fully dynamic, allow-
ing new packages to be mapped and deployed without
shutting down the whole service. This capability can
be used to add redundant groups, to move capsules
from host to host, and to otherwise alter the deploy-
ment characteristics of the service. Aero’s full reflec-
tive knowledge of the deployed service is essential for
tracking the interdependencies between deployed
components.

Graceful evolution of a deployed service in the face
of change utilizes many of the same mechanisms.
New versions of packages need to be mapped and
installed, new capsules need to be activated and the

trading structure needs to be adjusted to make the new
object implementations available. Once new groups
have been instantiated and the group structure has
been adjusted to include them, the old capsules can
simply be terminated. The client’s error recovery
mechanisms will correctly reacquire new traded inter-
faces and minimal interruption will be perceived.

IV. SUMMARY

This paper has illustrated the organization and de-
ployment of complex CORBA-based systems. It em-
ploys a realization of some of the TINA-C Distributed
Processing Environment concepts and languages that
have been implemented in an environment called
Aero. This environment supports the following capa-
bilities:
•

•

•
•
•

•
•

Representation of system/service organization in
language-neutral terms.
Generation of implementation skeletons and cus-
tomized frameworks.
Modelling of platform and network organization.
Management of component interdependencies.
Installation, activation, and shut down of service
components.
Monitoring of operational status.
Component restart for failure recovery and sys-
tem evolution.

The Aero DPE has been characterized as being in
‘Operational Compliance’ with TINA with respect to
the TINA Computing Architecture [10, 11]. It has
proven the practicality of the ideas and concepts be-
hind the TINA Distributed Environment specification.

REFERENCES

[1] OMG: “The Common Object Request Broker:
Architecture and Specification. Revision 2.0,”
OMG, July 1995, Updated July 1996.

[2] TINA-C:”TINA DPE Architecture,” TINA-C
Document, Version 2.0b0, November 1997.

[3] F. Leong, S.P. Mylavarabhata, T. Nguyen, F.
Quemada, “Distributed Processing Environment:
A Platform for Distributed Telecommunications
Applications,” Hewlett-Packard Journal, October
1996.

[4] L.A. de la Fuente, T. Walles, “Management Ar-
chitecture,” TINA-C. December 1994.

[5] J. Eastman, R. Hirschfeld, “Meta-Object based
System Generation” STJA’97 Proceedings. Erfurt
1997.

[6] J. Eastman, R. Hirschfeld, “A Trading-Based
Component Environment” STJA’98 Proceedings.
Erfurt 1998.

[7] J. Eastman, R. Hirschfeld, “Repository-Based
Deployment of CORBA Applications,”
COMDEX Enterprise '98 Proceedings, Tele-
comIT Forum, Frankfurt, 1998.

[8] http://www.windwardsolutions.com/Aero.
[9] Y. Inoue (ed.): “The TINA Book: Co-operative

Solution for a Competitive World,” Prentice Hall,
1999

[10] D. Muldowney (ed.): “What is TINA and is it
useful for the TelCos? – Main Report,” Eurescom
Project P847-GI, Volume 1 of 4, February 1999

[11] Licciardi, C.A. et.al.: “What is TINA and is it
useful for the TelCos? – Assessment if TINA in
the real world,” Eurescom Project P847-GI, Vol-
ume 3 of 4, February 1999

