
Transpiling Slang Methods to C Functions
An Example of Static Polymorphism for Smalltalk VM Objects

Tom Braun
tom.braun@student.hpi.de

Hasso Plattner Institute

University of Potsdam, Germany

Marcel Taeumel
marcel.taeumel@hpi.de

Hasso Plattner Institute

University of Potsdam, Germany

Eliot Miranda
eliot.miranda@gmail.com

Hasso Plattner Institute

University of Potsdam, Germany

Robert Hirschfeld
robert.hirschfeld@uni-potsdam.de

Hasso Plattner Institute

University of Potsdam, Germany

Abstract

The OpenSmalltalk-VM is written in a subset of Smalltalk

which gets transpiled to C. Developing the VM in Smalltalk

allows to use the Smalltalk developer tooling and brings

a fast feedback cycle. However, transpiling to C requires

mapping Smalltalk constructs, i.e., object-oriented concepts,

to C, which sometimes requires developers to use a di�er-

ent design than they would use when developing purely in

Smalltalk.

We describe a pragmatic extension for static polymor-

phism in Slang, our experience using it as well as the short-

comings of the new approach.While our solution extends the

concepts developers can express in Slang, which reduces the

burden of �nding alternatives to well-known design patterns

and by enabling the use of such patterns the modularity, it

further complicates a fragile, already complicated system.

While our extension solves the task it was designed for, it

needs further enhancements, as does Slang itself in terms

of understandability in the �eld.

CCS Concepts: • Software and its engineering→ Source

code generation; Integrated and visual development envi-

ronments.

Keywords: object-orientation, modularity, polymorphism,

virtual-machine development, tooling, Smalltalk, code gen-

eration

ACM Reference Format:

Tom Braun, Marcel Taeumel, Eliot Miranda, and Robert Hirschfeld.

2023. Transpiling Slang Methods to C Functions: An Example of

Static Polymorphism for Smalltalk VM Objects. In Proceedings of

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for pro�t or commercial advantage and that copies

bear this notice and the full citation on the �rst page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

VMIL ’23, October 23, 2023, Cascais, Portugal

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0401-7/23/10.

h�ps://doi.org/10.1145/3623507.3623548

the 15th ACM SIGPLAN International Workshop on Virtual Machines

and Intermediate Languages (VMIL ’23), October 23, 2023, Cascais,

Portugal. ACM, New York, NY, USA, 6 pages. h�ps://doi.org/10.

1145/3623507.3623548

1 Introduction

When writing programs, one can choose between a multi-

tude of programming languages. However, not all program-

ming languages are created equal, and some are better suited

for certain use cases. When writing a language virtual ma-

chine, maximum performance is desired, which typically

requires a systems programming language such as C. If the

implementers do not want to adopt such a language, they

can transpile a chosen language to the performant one. The

OpenSmalltalk-VM[3, 6] is based on this approach. The VM

is developed in Slang, i.e. a subset of Smalltalk-80[4], which

gets transpiled to C.

The advantage of developing the OpenSmalltalk-VM in

Smalltalk is, that we can simulate the VM in the Smalltalk

environment. This approach allows developers to use the

Smalltalk debug tooling and the short feedback cycle in

Smalltalk to be able to change the VM code during its execu-

tion. Simulation enables developers to develop new features

without compiling the native VM once, as long as the simu-

lation is fast enough. If the simulation’s performance is not

enough anymore or the feature is completed, developers have

to shift to the compiled VM. When transpiling from Slang

to C and when compiling the resulting code, developers are

confrontedwith the limitations of the code generation. Amis-

match in expressiveness exists between the two languages.

While Smalltalk is object-oriented, C does not support this

paradigmwith concepts such as classes or polymorphicmeth-

ods. When developing only using the simulator, developers

can build software that cannot be translated as is.

Recently, we encountered such a case while writing a

new garbage collector for the OpenSmalltalk-VM. We de-

veloped the collector only using the simulator and used a

design pattern[2] the generator cannot translate. The new

garbage collector acts di�erently compared with the existing

collector, resulting in us wanting to use the existing collector

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

88

https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0009-0000-3853-4882
https://orcid.org/0000-0002-7559-6035
https://orcid.org/0009-0004-5604-1116
https://orcid.org/0000-0002-4249-6003
https://doi.org/10.1145/3623507.3623548
https://doi.org/10.1145/3623507.3623548
https://doi.org/10.1145/3623507.3623548


VMIL ’23, October 23, 2023, Cascais, Portugal Tom Braun, Marcel Taeumel, Eliot Miranda, and Robert Hirschfeld

in some special cases. In an object-oriented language, the

encapsulation of di�erent, interchangeable algorithms can

be implemented using the strategy pattern[2, pp. 315–323].

However, the strategy pattern requires a common interface

and di�erent classes with concrete implementations of the

interface. As long as only classes with distinctly named meth-

ods get generated, the pattern can be used. However, using

multiple garbage collection strategies in the same binary

requires to write all involved strategies into the C code. In an

object-oriented language, multiple implementations on dif-

ferent classes pose no problem, but C does not allowmultiple

functions with the same declaration, i.e., signature or name.

As Slang currently does not provide a production-ready

way to bypass this limitation, we are not able to express this

pattern easily.

As a part of our endeavor to make Slang easier to work

with, we want to support a certain amount of polymorphism:

static polymorphism. By static polymorphism, we mean that

we can de�ne which class’ methods get generated at tran-

spile time. This feature brings the mental model of the VM

developers closer to the one in Smalltalk, instead of having

to solve the problem as they would in C, which is quite dif-

ferent from Smalltalk best practices[5]. Additionally, static

polymorphism improves modularity, while being pragmatic.

In Slang we can use the strategy pattern. We do not have to

replicate code somehow to use the existing collector. We also

do not want to build an object mechanism (vtables) in C, be-

cause of the additional complexity and possible performance

impact of always using indirections.

The paper is structured as follows: �rst, in section 2, we

give background to theOpenSmalltalk-VM, how Slangworks,

and our motivation. Afterward, in section 3, we describe

the extension. In section 4, we give an experience report

and shortcomings we experienced. Finally, in section 5, we

conclude the paper and point out further development for

Slang.

2 Background and Motivation

In this section we describe the OpenSmalltalk-VM and its

relation with Slang. Afterward, we outline Slang and the

translation process to C. Finally, we explain our motivation

to extend Slang by a new mechanism.

2.1 The OpenSmalltalk-VM and Slang

The OpenSmalltalk-VM1 is the virtual machine for modern

Smalltalk implementations, such as Squeak2. The OpenSmall-

talk-VM is developed in Slang, a subset of Smalltalk. Be-

cause this subset is directly executable Smalltalk code, the

OpenSmalltalk-VM can be simulated in a Smalltalk image3.

1h�ps://github.com/OpenSmalltalk/opensmalltalk-vm
2h�ps://squeak.org/
3The image contains code for the VM and existing tools for development.

The current OpenSmalltalk-VM development image can be found under:

h�p://source.squeak.org/VMMaker/.

The advantages of this approach are (1) the �exibility of

always being able to change the VM code with a minimal

feedback loop and (2) the Squeak debugging tools are avail-

able. For developing the just-in-time compiler, the simulator

uses a processor simulator to execute native code. On the

downside, the simulation is slow. Therefore, for production

use, Slang gets compiled to C. The resulting source code

can be compiled with a normal C compiler. Note that the

compiled VM is much faster than the simulated VM but sig-

ni�cantly more di�cult to debug. Therefore, it is desirable

to work with the simulated VM as long as possible.

2.2 How Slang Works

Slang is a subset of Smalltalk that can be translated to C. The

transpilation is guided using implementations of prede�ned

class methods and pragmas[1] (annotations in methods). For

example, a common task performed by these mechanisms

is de�ning the C type of a variable. With the combination

of these two mechanisms, the code generator translates the

given classes to C code. As C does not have classes, the gen-

erator translates temporary and instance variables to local

or global C variables, class variables to de�ne directives, and

methods to C functions. Additionally, classes can be trans-

lated to structs if marked accordingly. Method selectors and

instance-variable names must be unique. C does not allow

multiple declarations with the same name. These restrictions

result in Slang being very close to C[7].

The following simpli�ed code shows the process of trans-

lating Slang methods to C:

CCodeGenerator>>generate: classList

classList do: [:class |

self addMethodsFrom: class.

self declareCVarsIn: class].

self prepareMethods.

self inline.

self generateCFiles

The code generator gets a list of all classes to translate

and iterates over the list. For every element the generator

parses all methods and adds them to the methods dictionary.

This dictionary stores the methods of classes. Consequently,

when the generator �nds a method with a previously added

selector, the generator throws an error because it cannot

generate unique functions as C requires. After all methods

of a class are successfully added, the generator calls the

declareCVarsIn: method of the class. In this method, the

class can declare variables and execute other calls on the

generator, too.

After the generator adds all methods, the generator pre-

pares the methods for further steps. Most noticeable for our

use case is that the generator traverses every method’s ab-

stract syntax tree (AST). Afterward, the generator inlines

89

https://github.com/OpenSmalltalk/opensmalltalk-vm
https://squeak.org/
http://source.squeak.org/VMMaker/


Transpiling Slang Methods to C Functions VMIL ’23, October 23, 2023, Cascais, Portugal

methods on the Slang level4. Finally, the generated AST can

be translated to C and written to source �les. These �les can

be compiled using a normal C compiler5.

2.3 Motivation

In a recent project, we implemented a new garbage collector.

The new collector has di�erent trade-o�s than the existing

one. Consequently, in some cases, such as making a snap-

shot6 of the running system, we want to use the existing

collector. A common object-oriented way to implement dif-

ferent interchangeable algorithms is the strategy pattern[2].

The strategy pattern requires a common interface for all

concrete strategies.

The OpenSmalltalk-VM’s code is mostly comprised of sin-

gleton classes, such as the interpreter or memory manager.

These classes use the strategy pattern and inheritance to

represent di�erent con�gurations. For example, the mem-

ory manager has a subclass that handles 32-bit systems and

one that handles 64-bit systems. Using these language con-

structs in simulation causes no problem as they are native

to Smalltalk. Until now, either one bit-�avor was generated

or the other, never both. Therefore, no problems occurred in

the generated code, as only one version was generated.

In our case, however, we require both garbage-collection

strategies to be generated. When trying to translate both

classes, at least the methods from the common interface

cause an error. For example, both collectors have a collect

method, which is di�erent depending on the collection logic.

They have the same name and therefore cannot be translated

this way.

To solve this problem, the idea of static polymorphism

existed in the OpenSmalltalk-VM. We took the idea and ex-

tended it to be usable for our case of the strategy pattern.

Additionally, our goal was to achieve support for the strategy

pattern without a big rewrite of the Slang code generation

process, because our goal was to implement a garbage col-

lector and not redesign Slang.

We had two alternative ideas: (1) we could implement

complete polymorphism in the form of vtables. This change

would introduce additional complexity, break Slang’s inlin-

ing as these calls are on function pointers and not known at

compile time in this case, and add a performance overhead

for always having the extra step of dereferencing the func-

tion pointers in the vtable. (2) We could duplicate the code

into our new garbage collector and de�ne unique names. We

4<inline:> is one example of a pragma controlling the translation process.

Using <inline:> the programmer can de�ne if the method should be inlined

into another, meaning in the C code happens no function call, but the inlined

method got inserted instead of the function call.
5Even if the generator can generate C �les, these �les do not necessarily

compile. One occasional error is the generator does not write out a function,

which results in a compiler error.
6A snapshot saves the current state of the heap to a �le. Afterward, the

execution of a Smalltalk image can continue from the point in time when

the snapshot was made.

decided against this approach because we now would have

multiple instances of the same code we have to keep in sync

and it would be more complicated to de�ne the interface,

as the method selectors would have to re�ect the di�erent

strategies. Additionally, we also would have to add extra

functions in classes using the collector classes, depending

on which methods use which strategy. Duplicating these

methods could get out of hand quickly.

Both ideas have costs we want to avoid, therefore we de-

cided to use the already introduced approach and extend

Slang’s idea of static polymorphism to handle the dedupli-

cation of function names.

3 Extension

We want static polymorphism to use the strategy pattern

for multiple garbage collection strategies in the generated C

code. This section describes the two di�erent mechanisms

we found to be necessary to support our use case. First, we

describe the direct use of polymorphism. Then, we show a

case where this mechanism is not enough to express what

we want and �nally our novel extension of Slang.

3.1 Direct Static Polymorphism

mark

CompleteMarker

mark

IncrementalMarker

CMmark

CompleteMarker

IMmark

IncrementalMarker

Figure 1. The left side shows the UML notion of the classes

with equalmethod selectors. The right side shows how Slang

resolves these methods internally

The direct static polymorphism tackles the problem of

multiple classes having methods with the same selectors.

When calling declareCVarsIn:, a call to the generator re-

moves duplicate methods and adds them to the methods pool

with a unique pre�x. The class calculates which methods to

remove by being manually given all di�erent classes in the

class hierarchy which con�icts with itself. Then, the class

pre�xes these methods with a unique pre�x, which we cur-

rently generate from the class name. Figure 1 shows how

Slang resolves such a method’s selector.

The �rst step of pre�xing the methods resolves the prob-

lem of the same selectors, but code using these methods

needs to know which concrete method should be called. This

is resolved by declaring the class to which an instance vari-

able should be resolved. From now on, we will call this class

the type of the instance variable. Declaring the type hap-

pens in declareCVarsIn:. In this method we de�ne which

90



VMIL ’23, October 23, 2023, Cascais, Portugal Tom Braun, Marcel Taeumel, Eliot Miranda, and Robert Hirschfeld

instance variable should be resolved to which concrete class

and in which scope. For example, we declare the variable

garbageCollector in the memory manager to be the new

garbage collector, and this should only apply to the memory

manager. Should other classes have an instance variable with

the same name, they will not be in�uenced by the declara-

tion.

During processing all functions, the generator traverses

the AST and resolves all calls to declared instance variables

to the correct type. Additionally, calls to self, i.e., the object

having polymorphic methods, are resolved automatically

to the class itself. Therefore, the generator can resolve the

correctly pre�xed method and write it into the C code.

3.2 Limitations of the Direct Approach

The direct approach works �ne as long as we only look at

direct calls. But further down the call chain, the approach

is insu�cient. Imagine a class A which has static polymor-

phism for an instance variable var of class B. Consequently,

normal calls to var are resolved to methods of class B. Class

A has a variable specialVar, which gets resolved to C, too.

When A calls a method on specialVar, the call gets resolved

to C. The problem occurs when C calls A again. A’s default

case is still B, meaning ordinary methods of A call meth-

ods as B de�nes them. Calling B’s method can invalidate

assumptions made by the code in C.

3.3 Spreading Static Polymorphism

store:

MemoryManager

IMstore:

MemoryManager

CMstore:

MemoryManager

store:

MemoryManager

Figure 2. On the left side is the class MemoryManager with

one method which uses an instance variable that needs poly-

morphism. The class resolves the polymorphism for the Com-

pleteMarker (CM pre�x) and the IncrementalMarker (IM pre-

�x).

We want to keep the type of a method over multiple calls,

even if methods called in between can be used in the con-

text of multiple polymorphic classes. For example, the store

method of the memory manager can be called by the existing

marker and the new marker and should act accordingly.

As Slang internally does not use a call graph, but only

looks at direct calls from methods while traversing the ASTs,

we propagate types through the methods itself. This means,

themethod encodes which type its calls should be resolved to.

For classes, we declare in the declareCVarsIn:method that

instance variables are one of = given types, with one default

type. The code generator then generates = + 1 variants for all

methods containing the instance variable. Additionally, the

generator calculates the transitive closure of the methods

using the instance variable. The generator creates the = + 1

variants for these methods too, as the type gets only spread

through polymorphic methods, and the methods from the

transitive closure could interrupt the passing of polymorphic

type information otherwise. = of these variants are pre�xed

for the= given types. Therefore, all calls in these methods are

resolved to the given type. Additionally, the generator adds

one unpre�xed method for the default variant. Consequently,

calls in this method are resolved to the default type. One

example of this method generation can be seen in Figure 2.

We added the capability to resolve only a given subset of

methods to the given types. This is necessary because some

special classes get extra attention from Slang, and extending

Slang to fully support these classes would have required a

high engineering e�ort we did not want to make at this point.

This decision causes problems, too, which we will discuss in

section 4.

Determining which variant of a method to call happens

through one of multiple mechanisms. First, if external code

calls the method without any type information, the code

calls the variant without any pre�x, which is the default

variant. We added this case to make using the extension

more ergonomic, by not having to declare the default case

in all classes. We also assume calls to the non-default cause

are an exception and thus should be declared explicitly.

Secondly, some classes get exclusively used by one strat-

egy. Consequently, we added the capability to associate

classes with a strategy. The association gets declared in

declareCVarsIn:, too. Calls from associated classes get au-

tomatically resolved to their associated strategy, meaning

the method with the type of the associated class. For example,

if a class associated with the CompleteMarker calls store:

on the MemoryManager, the internal CMstore: method will

be used.

Lastly, we added three pragmas to resolve special cases

on a method level:

1. We can resolve a method to a speci�c type. Methods

are assuming the existing logic, calling other methods

that use static polymorphism. If these methods use

other calls, we do not want to change, we can just

resolve certain methods. For example:

<staticResolveMethod: 'setIsMarkedOf:to:'

to: #StopTheWorldGC>

91



Transpiling Slang Methods to C Functions VMIL ’23, October 23, 2023, Cascais, Portugal

is a pragma that sets the type of setIsMarkedOf:to:

to StopTheWorldGC.

2. We can de�ne the type all calls in a method should

be resolved for. This approach gets used by methods

in classes without polymorphism, calling always the

same strategy. It is similar to associating classes with

a strategy, only on a method level. For example:

<declTypeForPolymorphism: #StopTheWorldGC>

3. We can de�ne a type for a receiver in the method. This

last approach can be used as an alternative to approach

(2) if all calls to be resolved are to the same receiver.

For example:

<staticResolveReceiver: 'objectMemory gc'

to: #StopTheWorldGC>

resolves all calls on objectMemory gc in the current

method to StopTheWorldGC.

4 Experience Report and Open Challenges

We got the initial implementation of the polymorphism to

work in a week of coding. This undertaking took one person,

who used the code generator but did not know its implemen-

tation, about 40 hours. We extended the previously existing

hook for simple static polymorphism by the in this paper

described approach. Using our approach was straightfor-

ward, as we designed it for our use case. We �ddled long

enough with the approach and added the described pragmas

as a workaround until the extension was able to express the

semantics we desired.

Afterward, we could use the OpenSmalltalk-VM both with

the new and the existing collector in the same binary. The

�rst drawback was the renamed methods in the C code. Dur-

ing debugging the compiled VM, we rely heavily on helper

methods de�ned in the code. Some of these methods changed

their declaration to a pre�xed one. This change is not too

confusing, but sometimes unexpected when a helper func-

tion just de�ned in Smalltalk now has a di�erent name in the

debugger. In particular, with the extension, inexperienced de-

velopers might be surprised and assume that their code was

not generated. Therefore, the renaming makes debugging

more di�cult.

Months after we got the �rst version of the garbage collec-

tor to run, we extended the collector to work with an addi-

tional component of the VM. At this point, we encountered

subtle problems with our approach. Because the type infor-

mation gets only spread by polymorphic methods, a method

in the new component not being declared as such stops the

correct spread of the type information. Consequently, code

uses the existing logic, thereby calling code with the default

logic, which is the new one. Additionally, an error also oc-

curred the other way around. Code using the new logic called

code with a type declaration for the existing logic. Swapping

between the logic caused an error here. These errors do not

trigger an error in Slang. The generated code compiles, but

consequently intricate errors can enter the code base, which

we experienced.

But why not warn about such transitions? The generator

writes other warnings to the transcript7. In the case of one

logic calling a method hardwired to another type, we could

warn programmers and hope that they take the warning

seriously. Transitions caused by entering methods without

polymorphism and unwantedly calling the default type are

more di�cult to detect, as we would have to construct an

analysis on the call-tree, to detect such transitions. The anal-

ysis would be complex and could generate false positives.

For practical use, we used an external tool to keep the im-

plementation minimal8.

For checking transitions between types, we queried the

call graph enriched with metadata about our types. We can

easily generate a call graph from the ASTs the generator

holds during the translation of Slang to C. We export this

call graph enriched with meta information about potential

types, a call got resolved to, to a CSV �le which in term

we import into Neo4j9, a graph database. In this database,

we can easily query paths from one resolution of a type to

another one. Using queries that identi�ed transitions from

one type to another, we �xed multiple issues with the type

declarations. Additionally, the presence of a query language

for the graph enables us to quickly change our question in

comparison to implementing such logic in Smalltalk.

Figure 3. In the VMMaker environment (A), the simulator

(B) simulates a Smalltalk image using the VM under devel-

opment. Developers can inspect the state of the running VM

and even change the VM’s code during execution, thanks to

Slang.

7Writing to the transcript is the Smalltalk equivalent to writing to stdout or

stderr.
8Additionally, we used the tool for querying other information about the

code base.
9h�ps://neo4j.com/

92

https://neo4j.com/


VMIL ’23, October 23, 2023, Cascais, Portugal Tom Braun, Marcel Taeumel, Eliot Miranda, and Robert Hirschfeld

Finally, we want to comment on the state of Slang as

a whole. Slang gets the job done, enabling the hybrid de-

velopment of the OpenSmalltalk-VM in a Smalltalk image

and compiling the code to a much more performant native

application. The major advantage of using Slang is the short

feedback cycles Smalltalk brings and the tooling (see Fig-

ure 3). On the downside, Slang is not intuitive to use. Errors

such as a method not being generated to C code or a method

not being inlined, although it should be, occur regularly. Fur-

thermore, just because the generator generates C �les, they

do not necessarily compile. The generated C code is gener-

ally correct on a syntactic level, but often not all necessary

methods are generated. Consequently, developers have to

�gure out the problem, thereby having to bridge the abstrac-

tion gap between a C compiler error and what the generator

did or did not, and then they have to �gure out how to con-

vince Slang to generate the desired outcome. Another point

is, that the generator already has a similar solution to a type

problem: type inference for the types of the generated C func-

tions. This feature in its use and dangers are similar to ours:

great if they work, but quite a pain to debug if not. Once,

the type inference generated a signed type signature for a

function needing an unsigned signature. This error spreads

an erroneous state to later execution, which was di�cult to

trace back. In summary, Slang is a tool that works, but this

tool is sometimes brittle and could break easily even without

adding a complex feature. Our extension works, but it makes

Slang even more error-prone.

5 Conclusion

In this paper, we described our changes to Slang to bring

the mental model between Smalltalk code, for use with the

simulator, and C code, for production use, closer together.

We described the high-level implementation of direct and

spreading static polymorphism. Direct polymorphism re-

names the methods directly when the generator adds them

before other classes can add con�icting methods. Spread-

ing polymorphism allows methods of one class to be used

by multiple strategies and not lose track of the type of the

calling method. Together these two mechanisms allowed

us to use the strategy pattern, which reduces the overhead

for developers, who do not need to �nd another abstraction,

that �ts Slang and C. On the downside, our implementation

can cause subtle bugs when (1) transitioning from methods

with polymorphism to methods without polymorphism or

(2) when calling a method of another type than the calling

method’s type.

As future work, Slang should receive a redesign to make

it easier to debug, stable, and expressive:

1. We would wish for better explorability of why the gen-

erator took a certain decision, such as not generating

a method. This error is far too common and some-

times requires intricate knowledge of the generator’s

implementation to understand.

2. The generator should be able to detect if the gener-

ated C code will compile, or at least not compilable C

code should be an exception. The generated C code

is syntactically correct, but sometimes the generator

transpiles Slang and functions are missing. The gen-

erator should have knowledge of the present C code

on the platform and which functions it has to generate.

Otherwise, the generator should inform the developer

and help him understand what went wrong. Possibly,

idea (1) could help.

3. First class support for static polymorphism. It should

be possible to mark classes as polymorphic and the

generator �gures out the rest. This would require a big-

ger redesign of the generator but would make it easier

to use the polymorphism and because polymorphism

would be applied to all classes, no bugs from transition-

ing to a method without polymorphism would occur

anymore.

Overall, Slang and the tooling around it provide a pro-

ductive environment for developing the OpenSmalltalk-VM.

Although Slang has some rough edges, we are willing to

endure possible quirks and shortcomings for the superb

simulation-based VM tools for debugging and exploration.

References
[1] Stéphane Ducasse, Eliot Miranda, and Alain Plantec. 2016. Pragmas:

Literal messages as powerful method annotations. In Proceedings of the

11th edition of the International Workshop on Smalltalk Technologies. 1–9.

h�ps://doi.org/10.1145/2991041.2991050

[2] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1995.

Design patterns: elements of reusable object-oriented software. Addison-

Wesley Professional.

[3] Adele Goldberg and David Robson. 1983. Smalltalk-80: the language

and its implementation. Addison-Wesley Longman Publishing Co., Inc.

[4] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay.

1997. Back to the future: the story of Squeak, a practical Smalltalk

written in itself. In Proceedings of the 12th ACM SIGPLAN conference

on Object-oriented programming, systems, languages, and applications.

318–326. h�ps://doi.org/10.1145/263698.263754

[5] Edward J Klimas, Suzanne Skublics, and David A Thomas. 1995.

Smalltalk with style. Prentice-Hall, Inc.

[6] Eliot Miranda. 2011. The cog smalltalk virtual machine. Proceedings of

VMIL 2011 (2011).

[7] Eliot Miranda, Clément Béra, Elisa Gonzalez Boix, and Dan Ingalls.

2018. Two decades of smalltalk VM development: live VM development

through simulation tools. In Proceedings of the 10th ACM SIGPLAN

International Workshop on Virtual Machines and Intermediate Languages.

57–66. h�ps://doi.org/10.1145/3281287.3281295

Received 2023-07-23; accepted 2023-08-28

93

https://doi.org/10.1145/2991041.2991050
https://doi.org/10.1145/263698.263754
https://doi.org/10.1145/3281287.3281295

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 The OpenSmalltalk-VM and Slang
	2.2 How Slang Works
	2.3 Motivation

	3 Extension
	3.1 Direct Static Polymorphism
	3.2 Limitations of the Direct Approach
	3.3 Spreading Static Polymorphism

	4 Experience Report and Open Challenges
	5 Conclusion
	References

