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Abstract

Programmers ask complex questions in their search for solu-
tions during software development. Along with traditional
tools such as debuggers and profilers, state-of-the-art ap-
proaches like Babylonian Programming can help program-
mers answer those questions through interactive and visual
feedback. Large language models (LLMs) and programming
agents are part of programmers’ toolboxes and are well-
integrated into their development workflows. However, they
are not yet helpful in considering questions involving run-
time behavior.

In this paper, we first review the literature to identify
concerns programmers face during development and high-
light how humans usually address them. We then focus on
questions about program behavior and propose integrating
Babylonian-style programming techniques with LLMs to
help answer related questions. Finally, we suggest four key
properties that future LLM-based development tools should
support: (1) LLM tool usage traceability for explainability,
(2) resumability of development progress for handovers be-
tween human programmers and LLM-based programming
agents, (3) context efficiency through selective data querying,
and (4) multi-source synthesis for tool integration.

CCS Concepts: « Software and its engineering — De-
velopment frameworks and environments; Software de-
velopment techniques; Integrated and visual development
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1 Introduction

During programming, programmers formulate and ask ques-
tions [6, 13-16, 23]. Questions during the development pro-
cess span a wide range, from information-seeking questions,
such as “Which class do I need to solve this task?” to de-
tailed code comprehension questions about the run-time:
is this line reachable under those constraints. Answering
such questions in a timely manner increases programmer
productivity [14].

Large language models (LLMs) are frequently used during
programming to answer programmers’ questions and they
have become an integral part of their workflow [12]. LLMs
show similar biases as humans regarding solution-planning
steps since they are trained on a vast amount of text pre-
dominantly created by humans [18]. However, unlike human
programmers, LLMs only have limited access to the tools
and interfaces typically used to investigate and find answers
to their questions. This limitation is particularly evident for
questions related to run-time behavior, which often require
dynamic analysis, and real-time feedback from code. Recent
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studies emphasize this gap: state-of-the-art models with-
out tool support perform poorly on basic code reasoning
questions [2, 8]. This divergence raises a critical point: if
programmers use LLMs to answer questions about code, but
LLMs can’t explore or interact with code the way humans can,
how well can they answer those questions?

Humans have access to debugging tools (e.g., breakpoints,
logs, watches) optimized for manual inspection and stepwise
execution to develop an iterative understanding of program
behavior [11]. Moreover, Live [25] and Babylonian Program-
ming [20] in combination with example generation [17] allow
direct inspection of run-time values to understand what the
code actually does. Those interactive, visual tools are built
to help humans understand code through direct interaction,
not to automate understanding for machines. How LLMs
can acquire the same information to be on par with human
capabilities is still underexplored. By equipping LLMs with
capabilities available to human programmers—such as debug-
ging and run-time inspection—we envision a future in which
LLMs can reliably answer programmers’ most pressing ques-
tions, shortening the feedback loop during development.

In this paper, we formulate a vision and show an initial
prototype for how we can bridge the gap between the tools
human programmers use and LLMs. To that end, we first
explain how LLMs can invoke external tooling in Section 2.1.
Second, we list and categorize questions that human pro-
grammers ask and discuss tools they use to answer the ques-
tions in Section 2.2. We examine the tools that human pro-
grammers use to answer these questions, arguing that LLMs
should likewise have access to such tools to effectively assist
developers. While each concern represents an important gap
in current LLM capabilities, we focus on run-time behavior
and debugging questions for the remainder of this paper, as
they exemplify the challenges of adapting interactive, visual
tools for text-based LLMs. In Section 3, we take one tool that
allows introspection into run-time information, Babylonian
Programming [20], and demonstrate an approach to transfer
its benefits to an LLM agent. In Section 4, we then envision
a scenario where this tool’s integration allows the LLM to
answer questions that would have previously been difficult.
Finally, after highlighting related work in Section 5, we dis-
cuss and formulate aspects of a vision on how further tools
should be integrated and how challenges can be addressed
in Section 6.

2 Questions in Human and LLM Workflows

In this section, we first describe how LLMs can ask questions
and receive answers from an environment. We then give
an overview of questions that programmers ask and derive
challenges to integrate these with the mechanism LLMs use
to ask questions.
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2.1 Questions and Feedback Cycles for LLMs

Large Language Models are neural networks trained on a
vast amount of publicly available textual data to predict the
next most likely sequence of characters. Research has shown
that LLMs excel in pattern-based tasks such as code gener-
ation [3]. Prompting strategies such as Chain Of Thought
prompting instruct the LLM to build an internal reasoning
chain through a task to improve answer quality [28]. Lever-
aging the same reasoning capabilities, models can be used as
zero-shot planners, creating step-by-step instructions [10].
Yet, LLMs operate on text and cannot use interactive graph-
ical tooling designed for humans. This limits their ability
to answer questions requiring information that the tooling
provides. In addition, because LLMs generate probabilistic
output, they are not suited for deterministic answers, such
as mathematical problems. Consequently, researchers equip
LLMs with external tools that can return an exact deter-
ministic result. Toolformer equips LLMs with an API to call
external tools, such as Q&A systems, search engines, and
calculators [21]. In the context of software engineering, Tool-
Coder uses a fine-tuned model to call search APIs to improve
code generation tasks [31]. An external tool consists of a
name, a short description of what the tool does, and optional
parameters. Closed-source models such as GPT-40 incorpo-
rate similar capabilities through a technique called *function
calling”. The textual output of the tool is then fed as input
to the LLM.

2.2 Questions Asked by Programmers

Several studies investigate questions programmers ask dur-
ing programming activities to characterize their information-
seeking behaviors, identify gaps in existing documentation
and tooling, and inform the design of developer assistance
systems. To synthesize insights from these studies, we con-
ducted an exploratory literature search using variations
of the query ’questions developers ask’ across academic
databases. From the results, we pragmatically selected pa-
pers that examine questions during programming activity,
excluding studies focused solely on learning or documenta-
tion scenarios. We extracted representative questions from
these papers and grouped them into underlying concerns. We
define a concern as a group of questions with similar intent
and sources of information required to answer these ques-
tions. For each concern, we outline the motivation behind
the question, the information sources required to answer it,
and the developer tools that LLMs should likewise be able
to use to be on par with human programmers. LLMs must
be able to answer questions from these concerns to match
human programmer capabilities.

Code & usage exploration. Understanding and navigat-
ing an unfamiliar codebase can be challenging, as it requires

Thttps://platform.openai.com/docs/guides/function-calling
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developing a mental model of the existing components and
their purposes. When programmers work on a given task in
an existing codebase, they want to reuse existing function-
ality to avoid code duplication or time required for imple-
mentation [4]. Because of that, they ask information-seeking
questions and follow up with code comprehension questions
to understand how to use the discovered API elements [6].
Questions such as “Which packages or namespaces of an API
provide types relevant to my task?”, “Is there a PieChart type?”,
“What does the Validator class actually do?” are asked to build
up that mental model [6]. Programmers explore unfamiliar
codebases using full-text or vector-based search and navi-
gation features enabled by static analysis, and read docu-
mentation including changelogs [5, 6]. Beyond searching
within the codebase, programmers search the web for pos-
sible answers, e.g., for frameworks or basic functionality of
a programming language. They also interactively run code,
evaluate examples by trial and error, and inspect run-time
values to understand types and data usage with, for example,
Babylonian Programming [20].

Software architecture. Enhancing the structural organi-
zation of a codebase and leveraging proven design patterns
contributes to better maintainability and extensibility, espe-
cially when unexpected requirements arise [19]. By fitting
new functionality into a coherent architecture, programmers
ease possible extension and maintain flexibility for unfore-
seen requirements. In particular, design patterns are proven
implementation guidelines that localize changes, ensuring
extensibility and maintainability. Due to such lasting bene-
fits, programmers raise concerns by asking: What’s the best
design for implementing this? Is the existing design a good
one? To move this feature into this code, what else needs to
be moved? [16, 23]. While design pattern recommendation
systems exist, they are not widely adopted by programmers.
As a result, identifying and selecting an appropriate design
pattern for a given task still requires expert knowledge and
experience [1]. Similar codebases and documentation on
their architectural decisions can serve as inspiration, though
finding them often requires an extensive search.

Code history & ownership. Most software projects are
collaborative efforts that require tooling to track who made
changes, why they were made, and how those changes affect
the team. When a task requires understanding unfamiliar
code snippets, questions such as “Who owns this piece of
code?”, “Who has made changes to a defect?”, “How have re-
sources I depend on changed?” emerge [7, 13]. Colleagues
responsible for the given code might have additional con-
text about why it was written in a certain way. Knowledge
about design or implementation choices are often not ex-
ternalized, making it inaccessible to others. Programmers
might uncover this information by reviewing pull request
discussions, mailing lists, and commit messages of version
control systems. In other cases, it may be inferred through
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manual inspection of code history; however, this process is
often tedious and time-consuming.

Performance & resource management. Programmers
are also concerned with the performance characteristics of
their code. Meeting quality standards or ensuring perfor-
mance guarantees requires programmers to consider execu-
tion speed, memory usage, and thread safety. Programmers
must identify and analyze bottlenecks when a function does
not meet performance requirements. On embedded hard-
ware, limited memory makes efficient memory management
essential. In safety-critical systems, thread-safety is vital to
avoid hard-to-debug race conditions. Thus, questions such
as “Which part of this code takes the most time?”, “How big is
this in memory?” and ‘Is this method thread-safe?” arise [16].
To track performance bottlenecks, programmers use time or
memory profilers, which aggregate stack samples and record
metrics such as execution time and memory usage. Results of
the time profiling are often visualized as a flame graph, show-
ing the total time spent in each function. Memory profiling
shows allocations, lifetimes, and potential memory leaks.

Testing. Testing uncovers errors or unexpected behav-
ior within the code, ensuring code quality and correctness.
Programmers write tests to ensure quality, uncover poten-
tial issues and edge cases, and to decrease maintenance ex-
penses [24]. Out of this motivation, questions such as “How
can I test this code or functionality?” and “Is the test or code
responsible for this test failure?” arise. Despite manual test
creation, programmers employ test generation frameworks
to create tests automatically. They utilize coverage tooling
to identify non-tested execution paths. In addition to tra-
ditional unit and integration testing, fuzzing and mutation
testing are techniques to uncover unexpected behavior in
code. Both techniques can produce a large volume of output
that programmers have to analyze and interpret.

Build environment. Getting the project to run is essen-
tial for debugging and introspection, but requires knowl-
edge about the prerequisites, project dependencies, and the
build chain. Studies show that programmers compile 7-10
times per day, making a functional build chain a key part of
productive workflows [22]. Programmers are at least once
concerned about the build process for their setup, result-
ing in questions such as “What do I need to include to build
this?” and “Why did the build break?” [16]. In the best case,
step-by-step documentation, an automatic script ensures a
straightforward build or a knowledgeable and available col-
league. However, as soon as errors arise, the programmer
needs to find a solution by interactive trial-and-error execu-
tion, debugging and reviewing the build script, inspecting
mistakes and progress, or searching the web.

Run-time behavior & debugging. Running and debug-
ging code is an interactive task used to explore, understand,
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and potentially fix code in case it does not show the de-
sired behavior. It is useful for analyzing unfamiliar or buggy
code and identifying its potential applications by formulat-
ing hypotheses and testing them through trial and error.
When running and inspecting code, programmers mainly
ask questions related to control flow and state: Is this line
reachable under these constraints? Why did it (not) happen?
How did this run-time state occur? Where was this variable
last changed? [14—16]. Static code analysis is often not suf-
ficient to reason about how a program actually behaves at
run-time. Therefore, programmers rely on interactive and vi-
sual tools to expose and track control and data flow. Modern
debugging tools including time-travel debuggers [27], dy-
namic slicing techniques, Live and Babylonian Programming
environments, tracing frameworks and low level logging
statements provide the programmer with the required infor-
mation to validate their hypothesis on how the code works
step by step. To test the code with different invocations,
example generation techniques can be applied [17].

2.3 Discussion of Questions and Tools

The tools programmers use to answer their questions in-
clude both tools that are commonly used as command-line
tools, as well as tools that programmers typically use inter-
actively. Interactive tools present a challenge for text-based
LLMs. For example, they present users with an interaction-
feedback loop that often relies on frequent small steps. The
programmer is presented with information, triggers an in-
teraction, receives feedback in the form of new information,
and derives the next interaction.

Another aspect that presents challenges is the visual na-
ture of tools. For example, flame graphs give a detailed view
of where an execution spends how much time. These tools
use visual cues to structure information and guide a pro-
grammer’s attention to relevant parts. Text-based LLMs nec-
essarily require textual representations of information. Con-
verting visual data to text reduces accessibility since visual
cues like color and proximity help programmers interpret
information faster [20].

The effect on LLMs varies depending on the tool and use
case. However, it is known that the structure of the input
can significantly impact LLM output generation [9]. Conse-
quently, while the best practices for presentation to LLMs
differ from those designed for humans, investigating and
experimenting with turning visual structures into text is
important.

Moreover, to ensure collaboration between programmers
and LLMs, textual input should be optimized for model
performance and developers’ interpretability. Programmers
should be able to seamlessly continue the work initiated by
the LLM, whether that means resuming exploration or a de-
bugging session. This requires intermediate artifacts, such
as instrumented code, probe results, or potential edits.
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sayHello() { )
X O - this: [Timmy 3 %)
console.log( I'm ${this.name} and I like ${this.hobby}”);
X Q this.name: [Timmy Tim
testPerson divaD

}

LLM Tool Call:
WRITE:
sayHello() {
console.log( 'I'm ${bpProbe(this.name, 483)} and I like ${this.hobby}");

}
EVAL: sayHello();

Tool Response:
sayHello() {
console.log("I'm ${bpProbe(this.name, 483)} and I like ${this.hobby}");
// 483: Timmy -> Tim, testPerson -> divaD
}

Figure 1. Top: A screenshot of a Babylonian Programming
implementation [20]. An example is attached to the sayHello
method. A probe is attached to the this.name expression and
reports values observed during example execution. Bottom:
an implementation of the mechanism from the LLM tool call
perspective, where the LLM requests to write probes into
the source and specifies the example it would like to invoke.

3 Babylonian Programming for LLMs

In this section, we describe a prototype of a visual tool made
accessible to LLMs to serve as an example for similar tools.
We choose for this example Babylonian Programming [20].

Babylonian Programming consists of examples and probes
as shown in Figure 1. Unlike the program’s main entry point,
examples serve as alternative entry points that allow targeted
execution of specific code sections. As such, they limit the
scope of execution to those parts that the programmer deems
relevant. Probes are used to sample information from the
run-time state of a program. For example, a value probe
reports the result of an expression’s evaluation and displays
it next to the expression’s source code in the programmer’s
code editor.

Babylonian Programming thus allows programmers to
quickly obtain information about program’s run-time behav-
ior without the often required overhead of manually interact-
ing with a program until it reaches the relevant part in the
code, interspersing printf statements, or inspecting the state
in the debugger. The probes minimize the spatial distance
between source and values to support programmers in read-
ing the output, as opposed to, for example, printf statements
that appear in a separate window and where output from
multiple statements collects at the same time. Notably, to
answer questions where the order of execution is important,
a log akin to printf output could be a preferable presentation
of information.

3.1 Mapping from Interaction Tool to Text

As described in Section 2.3, we need to identify a suitable
mapping from the interactive, visual tool to a text format
that is usable by the LLM. This relates to two parts: the input
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that users would give the tool and the output that the tool
presents to the user.

In the case of Babylonian Programming, we observe two
main inputs the user provides: the placement of examples at
the top of a method and the placement of value probes around
expressions in methods. The output of the tool reports values
by displaying them in the probe user interface element nested
in the source code. Commonly, a Babylonian Programming
implementation reports at least the last value captured as
well as a count of values that this probe captured.

On the highest level, the communication is commonly
facilitated by a simple tool calling interface, such as the
model context protocol (MCP) 2. The MCP is a standardized
protocol that defines how applications and tools expose their
functionality to LLMs. For concrete information, there are
many ways in which communication between the tool and
the LLM can occur for both input and output.

For input, an approach is to describe to the LLM how
probes are inserted into source code as expressions and have
it transform the source so that the probes are placed in the
desired locations. For example, in Smalltalk, we define a
method bpTraceWithId: that would be used in the following
way:

c := (a + b) bpTraceWithId: 'id43123°'.

Here, a generated ID that is inserted along with the instru-
mentation allows the tooling to identify where reported val-
ues originate from without changing the value of c. Alterna-
tively, line number and textual expression or column indices
must be provided to the LLM.

For output, the LLM could either receive a mapping from
probe ID to observed values or the observed values could
be inserted in the textual source, and the relevant excerpts
could be passed to the LLM. Here, experiments could be
worthwhile if the LLM, too, would benefit from the spatial
proximity of source to values or if additional mapping effort
makes no difference in response quality.

For cases where the LLM temporarily modifies the source
code on disk for instrumentation purposes, a form of lifecycle
would be desirable. For instance, the project could be copied
into a container for isolation purposes. Alternatively, the
system could keep track of changes and revert to the original
state after the execution of the example has concluded.

3.2 Language-dependent Instrumentation

The mechanism proposed above relies on source code instru-
mentation as a lightweight form to obtain run-time values. In
an environment such as Squeak/Smalltalk [11], such instru-
mentation is almost trivial as the development environment
and application run in the same Smalltalk image and the
instrumentation mechanism can thus simply write into a

global variable.

Zhttps://modelcontextprotocol.io/docs/
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For languages that separate development from application
environments, an inter-process communication mechanism
needs to be used. For example, observed values could be
appended to a temporary file that is read out when execution
concludes, or they could be sent to a web server that the
system keeps open while the example is executing.

The source code instrumentation mechanism, as described
above, will require the LLM or the system to insert a small
preamble that defines the probe function. Given a sufficiently
simple probe mechanism, such as appending to a file, an LLM
could generate such a preamble for the target language on
the fly, without the system having to store corresponding
stubs for the various languages.

Depending on the use case, the probe should extract dif-
ferent information. Likely use cases include:

value Report the (serialized) value of the observed ex-
pression.

stack Report the functions on the stack when the probe
was hit.

thread Report the ID of the thread the probe was hit in.

conditional Only report if the conditional evaluates to
true, e.g., for filtering for specific values.

time Report the time that the execution of the wrapped
expression took.

count Report the total count of values observed.

In some programming languages, obtaining this infor-
mation is simple, in others, it requires more advanced in-
strumentation, where it may also be unlikely that the LLM
can generate correct code on the fly. Consequently, storing
language-specific stubs along with the system may be helpful
in those cases.

4 Case Study

In our case study, we illustrate how programmers could bene-
fit from an LLM that has access to dynamic run-time tools to
answer debugging-related questions. We describe our design
and usage of a debugging agent that is connected to both
static tools for retrieving the source code of an application
and dynamic tools for Babylonian Programming.

Our agent is designed to take questions from a program-
mer that arise during an interactive debugging session and
are asked at a high to medium abstraction level, such as
“why”/“why not” questions or questions about the origin or
evolution of certain objects (Figure 2). Internally, the agent
performs its own autonomous research process: it (1) trans-
lates the initial question of the programmer into one or mul-
tiple lower-level questions (e.g., when or in which context a
certain code branch is reached), (2) formulates hypotheses
for these questions, (3) interacts with static and dynamic
programming tools to verify or falsify these hypotheses, and
(4) iteratively continues to ask further questions until it has
gathered all required information to answer the original
question of the programmer. The programmer can interact
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with the agent through a dedicated tool window or access
it from an open symbolic debugger, where it can also use
the call stack of the halted application as additional context.
Thus, programmers can remain at a more conceptual level in
their workflow and delegate specific questions to the agent.

We implement a prototype® of this agent in the Squeak/
Smalltalk programming system using the conversational
agent framework SemanticText* and GPT-40 via OpenAl's
chat completions API with function calling. We set up the
agent with a chain-of-thought prompt (approximately 600
words) detailing the context, intended workflow, and avail-
able tools for the task. We provide the agent with two classes
of functions. First, functions for static code browsing en-
able the LLM to list the members of a class, retrieve the
source code of a method, and navigate between callers and
implementors of methods. Second, functions for Babylo-
nian Programming allow it to instrument existing methods
with probes and run examples to trace values. For instru-
mentation, the LLM can call recompile(className, methodName
, source) to decorate the original source code of a method
with bpTracewithId: sends. For running examples, it can pass
a Smalltalk code expression or script to an eval() function.
To avoid dangerous side effects of evaluating Al-generated
samples, we can execute all eval() expressions in a light-
weight sandbox such as SimulationStudio’s’; however, we
have not yet implemented this in our prototype as we have
seen few incidents during our experiments.

Example. Figure 3 shows an interaction with our proto-
typical agent.® In this example, a programmer is exploring
the Smalltalk compiler of the Squeak system. While debug-
ging a concrete compilation task, they are wondering about

3https://github.com/hpi-swa-lab/squeak-semantic-babylonian
4https://github.com/hpi-swa-lab/Squeak-SemanticText
Shttps://github.com/LinqLover/SimulationStudio

®We provide the full conversation log here: https://hpi-swa-lab.github.io/
squeak-semantic-babylonian/assets/Compiler.conversation.html

High-level question

@® Human /
=-um Ny

N
~

Low-level question

#< Babylonian tools

&< Static code browsing

Figure 2. The design of our prototypical debugging agent.
Humans ask conceptual questions to the agent, which devel-
ops low-level questions and hypotheses and tests them by
interacting with tools for Babylonian Programming using
run-time values and source code reading.
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the origin of a specific bytecode in a method they are com-
piling. Instead of manually interacting with the debugger or
system browsers to search the possibly related subsystems of
the compiler for this information, they invoke our agent and
ask it: “why does this method have the byte 92 at position
30?” Subsequently, the agent performs its own reasoning pro-
cess by breaking down this question into smaller questions
regarding the parsing of the method source, the contents of
the AST, and the encoding of the method.

To answer these questions, the agent starts by browsing
the definition of the compiler class and the methods from the
open debugger session. Next, it annotates those methods
most relevant to the compilation process with Babylonian
probes and reruns the example from the debugging session
to gather additional run-time information about the variable
types and executed branches. By this, it discovers domain
classes such as Parser, Encoder, and CompiledMethod as well as
concrete run-time data such as the structure of the parsed
AST and the generated bytecodes of the returned method. In
the same way, the agent gradually navigates further through
the implementation of the compiler until it eventually discov-
ers a method in an encoder that emits the specific bytecode.
Finally, it summarizes its findings on the data flow and in-
volved methods in an answer to the programmer, who can
use this information to proceed with their overarching ex-
ploration in the relevant places.

Current limitations. In our experiments, we noticed sev-
eral weaknesses of our current prototype. First, the agent
tended to terminate prematurely before conducting an ex-
haustive research of the program, which we mitigated by
repeatedly typing “continue” into the chat. Second, the agent
showed a low affinity for Babylonian interfaces but tended
to mainly use static code browsing tools (presumably due
to the low prevalence of relevant tool usage in the training
data of the model). To mitigate this, we added structural
coverage to its workflow by limiting the number of allowed
browsing calls before instrumenting and running the next
method. However, we believe that these problems can be ad-
dressed by systematically optimizing our prompts or using
a fine-tuned model.

5 Related Work

To give a brief overview of related work, we first focus on
research on LLMs’ capabilities to reason about run-time
information with and without tooling, and secondly discuss
literature on how LLMs access external tooling.

Two peer-reviewed papers exist on the evaluation of the
code reasoning capabilities of LLMs. CRUXEval was the first
benchmark that analyzes input and output prediction of
state-of-the-art language models [8]. They investigated how
well a model can predict the output of small LLM-generated
Python functions, based on an invocation and the source
code. They discovered that models underperform, and Chain


https://github.com/hpi-swa-lab/squeak-semantic-babylonian
https://github.com/hpi-swa-lab/Squeak-SemanticText
https://github.com/LinqLover/SimulationStudio
https://hpi-swa-lab.github.io/squeak-semantic-babylonian/assets/Compiler.conversation.html
https://hpi-swa-lab.github.io/squeak-semantic-babylonian/assets/Compiler.conversation.html

Equipping Large Language Models with Tools to Answer Programmers’ Questions

PAINT ’25, October 12-18, 2025, Singapore, Singapore

Debug menu action "button for it" in model "a SearchB

£ BPAgent (gpt-40)

oo

Compiler=>=>compiledMethodFor:in:to:notifying:ifFail:logged: L
Compiler=>=>compiledMethodFor:in:to:notifying:ifFail:
SmalltalkEditor=>doltButtonFromSelection
SmalltalkEditor=>buttonForlt

[1in PluggableTextMorphPlus{PluggableTextMorph)=>=buttonForlt

Proceed || Restart | Into || Ower || Through || FuIIStacI” Where || Tally It |

browse || senders | impleme || versions || inheritar || hierarch! || variahle:| ( source )

compiledMethodFor: textOrStream in: aContext to: receiver
notifying: aRequestor ifFail: failBlock logged: logFlag

| methodNode method |
methodNode 1= self
compileMoPattern: textOrStream
in: (self classForReceiver: receiver context: aContext)
context: aContext
notifying: aRequestor

+ 3%,

User: Why does this method have the byte 92 at position 307
Assistant: ..

1. Byte 92: The byte 92 is introduced by the genReturnTop method in the EncoderForSistavl
class. It represents the bytecode instruction for returning the top of the stack.

2. Compilation Process: The Compiler class initiates the compilation process, which involves
parsing the source code into a parse tree (MethodMNode) and generating bytecode through
the BytecodeEncoder.

3. Bytecode Emission: The generateMethodOfClass:trailer:from: method in the
BytecodeEncoder class coordinates the bytecode generation. The
emitCodeForReturn:encoder: method in the ParseNode class calls genReturnTop to generate
the return bytecode.

4. Role of Byte 92: The byte 92 is a specific bytecode instruction used to return the top of the
stack from a message, which is essential for completing the evaluation of expressions like *2

If you have any further questions or need additional assistance, feel free to ask!

. [browseClass] [browseMethod] ... [recompile] [eval] ... [browseMethod] ...

self method byteAt: 30 92 || thisContext L

all inst vars stack top User:
parser all temp vars

cue textOrStream |

+User

|| +Assistant || Advanced |

Voice

Figure 3. Invoking our prototypical debugging agent from a traditional debugger in Squeak. The agent browses and traces
several methods to answer a question about the behavior of Squeak’s compiler. (Conversation truncated for screenshot.)

of Thought prompting increases the accuracy. REval extends
CRUXEval by adding intermediate predictions such as next-
line and intermediate state prediction [2]. In addition, they
introduced a metric measuring the consistency of the model,
making predictions. They also concluded that the models
show unsatisfactory performance. Both benchmarks focus
on model prediction without tool calling.

Interesting studies regarding adding debugger capabili-
ties to an LLM exist. Debug-gym is an interactive text-based
environment that mimics a software engineer debugging a
faulty codebase [30]. As one of its tools, it wraps the Python
debugger (pdb) and provides the LLM with capabilities to
add breakpoints, run tests, and rewrite lines to emulate how
humans would debug code. In our approach, we rely on
source code rewriting for Babylonian Programming instead
of using an existing debugger, giving us more flexibility in
information gathering. In addition, we aim to enhance the
programmer’s ability to debug instead of letting the LLM fix
the bug itself. The Large Language Model Debugger [32] uti-
lizes a control flow graph of generated code, their execution
traces, and intermediate states. While they achieve better
performance for code generation, they do not aim to explain
and answer questions related to debugging.

Another related research is on how LLMs can be equipped
with agentic capabilities and invoke external tools, such as
developer tooling, to retrieve answers. Exploratory program-
ming agents answer programmers’ questions about objects
from a running system by executing arbitrary code at run-
time to access their state and behavior and conducting an
internal research process [26]. SWE-Agent is a framework
that allows LLM models to use external tools [29]. In their
paper, they investigate how the interface design affects the
performance of LLM agents and introduce a system that can
modify, test, and execute a codebase. They report that the
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agent usage improved performance on two code generation
benchmarks.

6 Discussion & Future Work

We argue that equipping LLMs with user-facing program-
ming tools can benefit LLMs for programmers in two ways:
First, developers can reuse existing tools, including the knowl-
edge, mental models, and methods documented in them.
Second, we believe that LLMs with user-facing tools can
outperform traditional LLMs with only limited tool access.

As an initial evaluation of this claim, we have shown
a prototype that uses Babylonian Programming to answer
different questions about program behavior. In the future, we
want to prove our hypothesis by comparing these equipped
LLMs with traditional LLMs in a quantitative evaluation of
accuracy, resource consumption, and user experience. To
this end, we want to identify possible classes of use cases
that benefit from run-time information and integrate further
user-facing tools such as program tracers or profilers into
our prototype.

We envision that future LLMs will enable for tighter in-
teraction with existing tools and programmers. To achieve
this vision, future research should focus on four aspects: ex-
plainability, resumability, context efficiency, and combining
information sources.

Explainability. When LLMs solve problems using a set of
tools that is analogous to those used by programmers, their
reasoning has the potential to become more transparent and
relatable. In the case of a Babylonian LLM interface, the LLM
could internally reason in terms of examples and probes, al-
lowing programmers to comprehend which examples led to
which run-time values at which probes. These insights into
how the LLM came to an answer do not need to be presented
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as plain text. As Babylonian Programming has mechanisms
to visualize run-time values, so can the reasoning done by the
LLM be augmented by replacing serialized tool calls and val-
ues with domain-specific visualizations when programmers
need to understand them retroactively.

Resumability. One particular advantage of LLMs using
programmer-facing tooling facilities is that instrumentation
artifacts, placed inside the code, can become reusable for
programmers even after the LLM responds. A live example
and corresponding probe the LLM came up with, or a par-
ticular debugging state, could be persisted and reused by
programmers and future LLM calls, allowing programmers
to “resume” from any reasoning state the LLM has left. An
open question is how to design the user interface so that
programmers can select instrumentation parts they want to
keep, while discarding ephemeral examples and probes.

Context efficiency. Tools for programmers are often de-
signed to reduce information overload. For example, a com-
plex object tree can be displayed with expandable nodes, only
showing those children that a programmer is currently inter-
ested in, while long strings and lists might appear truncated
until explicitly selected for inspection.

Offering facilities that effectively select or focus relevant
information to an LLM and “collapsing” information that is
out of focus can ultimately reduce context size, thus minimiz-
ing the risk of polluting the context with distracting data and
even saving computational resources. These savings would
translate to faster round-trip times in conversations and less
energy consumption.

Part of this yet unexplored design space will be how much
information to provide eagerly in advance and how much
the LLM needs to fetch lazily after being presented with an
initial result from its tool call. A query language that specifies
which information the LLM is interested in could be a useful
tradeoff to explore. For example, instead of receiving all
inputs and outputs of a function it investigates, the LLM
could specify ahead of time that it is only interested in those
where the function raised an exception, or only certain fields
of a collection of objects. Extending the query language with
abstractions to sample, aggregate, or group data could enable
the LLM to further optimize yet-unseen data before it enters
its context, ultimately serving as a natural-language interface
to a query-based run-time inspection system.

Combining information sources. Run-time inspection
tools provide stack traces and performance data such as
timing, memory usage, page faults, and garbage collector
statistics. Making such information available could enable an
LLM agent to reason about the performance characteristics of
concrete data, answering questions like, “Is there a specific
shape or access pattern of my data structure that causes
performance to degrade?”
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Combining such information is not an easy task for pro-
grammers and requires the juxtaposition of code, concrete
data, and profiler output. How we could combine such infor-
mation in a serialized and efficient form for the LLM is yet to
be explored. A hypothesis might be to interleave code with
run-time data (including profiling information) as shown in
our prototype, keeping related data in close proximity.

7 Conclusion

In this paper, we presented a first attempt at bridging the
gap between LLMs used during development and human-
centered dynamic tooling, enabling LLMs to gather and rea-
son about run-time information better.

Our literature review showed a wide range of questions
programmers ask and the tooling they use to solve them.
LLMs should also leverage programmers’ tooling to answer
programmers’ questions, particularly tooling designed to ex-
tract insights from concrete run-time data. Using Babylonian
Programming as an example, we presented an integration
of a tool initially designed for programmers into an LLM-
based agent and demonstrated its practicality in a case study.
However, we also noticed that current LLMs are still biased
toward traditional ways of inspecting programs and might
benefit from fine-tuning.

Looking forward, continued research in this direction can
result in several opportunities for LLM agents: LLMs can
make their reasoning process more transparent by "acting"
during their reasoning in in terms of human-facing tools.
Their investigation can become resumable, enabling program-
mers to reuse and build on artifacts and instrumentation
previously used or produced by the LLM. Investigating more
expressive ways for the LLM to specify the information it
needs, e.g., through a query language, promises to reduce
context size and improve overall efficiency.

Ultimately, combining and synthesizing multiple sources
of static and dynamic data inspired by state-of-the-art pro-
grammer tools can improve the correctness, coherence, and
depth of LLM answers to programmers’ questions.
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