
Visual Design for a Tree-Oriented Projectional Editor
Tom Beckmann

Hasso Plattner Institute, University of Potsdam
Potsdam, Germany

tom.beckmann@student.hpi.de

Stefan Ramson
Hasso Plattner Institute, University of Potsdam

Potsdam, Germany
stefan.ramson@hpi.de

Patrick Rein
Hasso Plattner Institute, University of Potsdam

Potsdam, Germany
patrick.rein@hpi.de

Robert Hirschfeld
Hasso Plattner Institute, University of Potsdam

Potsdam, Germany
robert.hirschfeld@hpi.de

ABSTRACT
Projectional editors show promise for a variety of use cases, for
example in language composition and domain specific projections.
To allow efficient interactions within a projectional editor, it is
necessary for the editor to clearly communicate the structure of
the program to the user, such that it is clear what editing opera-
tions are supported for a given element. Making the abstract syntax
tree visible within the editor may provide this clarity, however, it
generally also results in considerably increased space usage, poten-
tially also impacting usability. We present an early prototype of a
tree-oriented projectional editor for Squeak/Smalltalk that tries to
minimize space usage while retaining a clear visualization of the
tree structure, balancing the two problems. We describe and discuss
our design prototype and do a preliminary evaluation through in-
dividual account of experience working with the editor on various
projects.

CCS CONCEPTS
• Software and its engineering → Integrated and visual de-
velopment environments.

KEYWORDS
projectional editing, visual programming language, Squeak/Smalltalk
ACM Reference Format:
Tom Beckmann, Stefan Ramson, Patrick Rein, and Robert Hirschfeld. 2020.
Visual Design for a Tree-Oriented Projectional Editor. In Companion Proceed-
ings of the 4th International Conference on the Art, Science, and Engineering of
Programming (<Programming’20> Companion), March 23–26, 2020, Porto, Por-
tugal. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3397537.
3397560

1 INTRODUCTION
Projectional editors allow composing different languages and choos-
ing different projections for parts of the abstract syntax tree (AST),

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
<Programming’20> Companion, March 23–26, 2020, Porto, Portugal
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7507-8/20/03. . . $15.00
https://doi.org/10.1145/3397537.3397560

to for example present them in a domain-specific way. They have
also been found to increase developer efficiency if well imple-
mented [1], and are sometimes considered more approachable as
the direct composition of elements does not allow for syntax er-
rors. Ensuring usability within projectional editors, however, is a
complex problem that requires robust design [12].

One main decision when creating a projectional editor concerns
the visual representation of the AST. In traditional text-based rep-
resentations, the AST is only implicitly visible through the vari-
ous syntax elements that denote inclusions or delimiters of lan-
guage constructs. Possibilities within a projectional editor include
representations that closely resembles text, for example seen in
mbeddr [10]. We call editors that use this type of representation
text-oriented. In contrast, Scratch [9] adopts a representation that
uses blocks for the elements of the AST and their composition
and mainly uses drag-and-drop for editing. Editors that adopt this
type of explicit representation of the AST’s structure we call tree-
oriented. Further, various examples of graph or data flow program-
ming editors exist, especially in designer-oriented applications such
as the Unreal Engine. Here, nodes in a graph describe expressions or
statements that are connected through edges. Editors may also mix
both textual and visual language for their individual strengths [3].

Certain trade-offs have to be considered when choosing a visual
representation. Using neighborhood information and a direction
of reading to denote structure will likely result in the most space
efficient representation. This is the approach used by regular text,
as users know to read code from left to right and manually build up
inclusion structures in their head as they parse the syntax elements,
such as parentheses. While non-text representations alleviate users
from having to parse the structure themselves, they may use con-
siderably more space to present the same information. Rather than
benefiting from the implicit structure through neighborhood, con-
nections have to be explicitly expressed, for example via edges in a
graph, or through blocks that contain one another. Both of these
approaches require extensive space between elements to be able to
present an unambiguous structure.

Efficiency in layout directly impacts usability, as has for example
been studied for the Code Bubbles IDE [2]. Users may have to
scroll or navigate considerably more if the part of the program
they are editing or have to refer to does not fit on their screen.
Instead, they have to retain information in their head that might
have been visible with a more concise representation. However, for
projectional editors, it has been found that an explicit understanding

113

https://doi.org/10.1145/3397537.3397560
https://doi.org/10.1145/3397537.3397560
https://doi.org/10.1145/3397537.3397560

<Programming’20> Companion, March 23–26, 2020, Porto, Portugal Beckmann, Ramson, Rein, Hirschfeld

of the AST’s structure or lack thereof will impact users’ ability to
navigate and modify programs [1]. An implicit representation of
the AST, as used in text-based projectional editors, may lead users
to perceive arbitrary limitations on what can be edited and what
cannot, such as neighboring binary expressions. To address this
issue, text-oriented projectional editors may re-introduce parsing
steps into the editor. For example, MPS introduced a concept of
Grammar Cells [11], which allow users to edit complex expressions
as they would in a text-based editor. The input is then parsed and
reinserted into the editor’s AST.

To find a middle ground between the aspects of space usage
and clarity of the tree structure, we present an early prototype of
a projectional editor for Squeak/Smalltalk. Our contribution is a
set of guidelines that we found to balance the two aspects well,
according to an early evaluation of our own usage of the editor in
various projects and developing the editor itself in a self-supporting
way.

Our design chooses to display the structure of the AST by means
of nested blocks. Colors are used to emphasize the blocks’ nesting.
To support the user’s understanding on how to accomplish certain
edits, we remove all syntax elements and constrain text editing to
identifiers and literals alone. All other operations happen on the
tree directly through a separate command mode.

In section 2, we describe different approaches used in projectional
editors to visualize ASTs, as well as our host environment. In section
3 we describe our own approach and discuss its limitations and
benefits in section 4. Finally, we present areas of future work in
section 5 and conclude the paper in section 6.

2 BACKGROUND AND RELATEDWORK
In this section, we present and discuss different approaches to visual-
ize theAST of projectional editors and describe the Squeak/Smalltalk
language and environment on which we built our editor.

2.1 Visual Design of Projectional Editors
mbeddr [10] is a projectional editor built on theMeta-Programming-
System (MPS) that uses a textual representation of the AST. Pro-
grams in mbeddr will read very similar, if not identical, to a textual
language. Additionally, projections within mbeddr may define vi-
sual structures not possible in text editors, such as multi-row ma-
trices that flow within a single line, or tabular state machines that
contain other textual code within their cells. Color is used here for
highlighting different syntactical elements, as in most text editors.

Lamdu[7] is a projectional editor with a focus on supporting a
REPL workflow. Similar to mbeddr, the representation appears very
similar to regular text editors, with text generally flowing from left
to right and colors used for highlighting syntax elements. Lamdu
will use the expression provided by the user in its REPL to evaluate
the code the user is currently working on and will insert either
value or type annotations under each subexpression.

The textual presentation of the code allows reading it in the same
way that textual code reads. Editing, however, is typically more
complex than working in a text editor, as the structure of the AST
has to be adhered to. Incomplete edits, such as inserting an opening
parentheses to start restructuring the tree may not be supported by
the editor, unless specific care has been taken to support this use

(a) mbeddr: a projectional editor using a C dialect for embedded ap-
plications.

(b) Scratch: an editor specifically aimed for learning to program.

(c) Unreal Blueprints: a graph programming editor for expressing
game logic within the Unreal Game Engine.

Figure 1: Three visual programming editors using text-
based, block-based, and graph-based interactions.

case, such as in MPS’ GrammarCells [11]. Otherwise, users have
to trigger specific commands, in this case for example a tree left
rotation. Hiding the AST and only presenting the syntactical, textual
representation may, however, make these types of explicit tree
transformations more difficult for a user to perform, as boundaries
and nesting of nodes are not necessarily apparent [1].

In Scratch [9], elements of the AST are clearly represented in
the form of boxes. Text is only used to adjust values and identi-
fiers within the boxes or configure their effect. Most interactions
that modify the tree structure happen via drag-and-drop, rather
than through placing parentheses or moving text ranges. Colors
are used in Scratch to describe different types of domain-specific
instructions, such as control flow, events, or motion. The shapes of
the blocks resemble jigsaw puzzles where blocks can be attached
or placed within another block if they have the correct type. While
these interactions feel very intuitive and the structure is very clear,
large programs in Scratch take up considerable space. Further, for

114

Visual Design for a Tree-Oriented Projectional Editor <Programming’20> Companion, March 23–26, 2020, Porto, Portugal

an editor in a professional setting, keyboard support may be re-
quired, as keyboard input could be considered the standard across
programming tools, likely due to the increased efficiency obtained
from using a keyboard as opposed to a mouse [6].

The Unreal Engine contains a visual programming editor called
Blueprints. Statements and expressions are represented through
nodes in a graph. Lines connect data outputs to data inputs. Each
primitive data type has a distinct color, used to show what data type
a line, input, and output carries. Additionally, a white line connects
statements that cause side effects to explicitly order them. Colors are
also used to show the type of nodes, for example events, side effects,
or pure functions. Blueprints defines shortcuts to automatically
align a selection of nodes and plugins exist that attempt to auto
format entire graphs. For complex expressions, Blueprints may
quickly pose challenges to find a suitable layout that still remains
readable. Nodes need a minimum distance from one another to
allow the eye to follow overlapping lines. Hovering a line will
highlight it.

For example in Origami Studio, mathematical expressions, which
often have complex graph layouts, can be expressed via text. Using
any variable, such as “x” will create an input to the resulting node.
We consider this a similar solution to GrammarCells, where an
edit that is easy to express in a text-based environment is input
as characters and then parsed to integrate with the projectional
environment.

2.2 A Projection for Smalltalk
Our editor uses a projection for the Smalltalk language [4], in par-
ticular the Squeak/Smalltalk dialect. Smalltalk is a language with
comparatively few syntax elements. It defines only six keywords
and revolves around the concept of message sends. Creating a pro-
jection for Smalltalk is as such easier, when compared to languages
where many different types of language constructs need to be dis-
ambiguated as the user edits the AST. Further, concepts integral to
Squeak/Smalltalk are already only editable via projections, such as
classes and method categories. The concept of a source code doc-
ument does not exist in Squeak/Smalltalk, rather editing happens
either on the projections of the organizing elements or on a single
method’s source code.

Except for method return statements and variable declarations,
Smalltalk defines only expressions: assignments, message sends,
cascaded message sends, blocks, and literal values such as variables
or numbers. An example of Squeak/Smalltalk syntax can be found
in figure 2.

3 APPROACH
In this chapter we describe the challenges we identified for a tree-
oriented visual editor design and our approach to a solution. The
implementation’s source code can be found on GitHub1.

For a projectional editor it is important that addressable units
appear clearly or that other means are put in place to ensure that
the user can quickly tell how language elements within the editor
can be interacted with. What we call a tree-oriented projectional ed-
itor relies on explicitly modifying the tree structure of the program,
rather than an intermediary textual representations. As such, the
1https://github.com/tom95/sandblocks

Figure 2: Squeak/Smalltalk’s syntax elements in a single
method, leaving out pragmas and literal byte arrays.

first challenge is that each element of the AST needs to be visibly
separated and the tree’s nesting needs to be apparent. Second, to
make editing complex methods feasible, we need to find a way
to present as much information as possible in the available space,
while still maintaining clarity. The less information about the code’s
context will fit on the screen, the more users are forced to scroll or
navigate. Third, a fast reading flow should be maintained. Impor-
tant properties of the source code should be immediately apparent
to allow users to quickly grasp the code’s structure. For example
control flow elements could carry stronger emphasis.

3.1 Editor Structure
Our editor tries to find a middle ground between fully block-based
and text-based appearance, see figure 3a. While we compose the
tree via nested blocks, the arrangement of the blocks follows the
left-to-right order that English text layout uses, similar to Scratch.
For complex expressions, a layout policy ensures that we wrap
message sends on multiple lines, such that they typically remain
readable without horizontal overflow. This is particularly important
as, unlike Scratch where a loop will nest its expressions on the next
line, we do not know what type of structure will be nested within
a message send and what a suitable alignment might be and can
only judge from its size.

In general, we observed a strong tendency of the discussed pro-
jectional editors to use their domain’s properties, such as types
of data or control flow elements, to make the code’s visualization
clearer. In Squeak/Smalltalk, this could be considered a downside of
having only few language constructs, as each has to serve a variety
of purposes and tooling needs to execute the code to get any deeper
insights.

Parent-child-relationships between nodes are displayed by nest-
ing blocks inside one another with a small gap to the edges, to
ensure that a block’s nesting level is discernible. This means a
row’s height is increasing as the nesting gets deeper, an effect that
text-based editors do not have to deal with. While we found that
increasing the gaps further helped in terms of clarity, the gaps are
also the most considerable reason why our layouts take more space
than text layouts. See figure 3c for a configuration that uses no
vertical inset inside its nodes. In particular the first row’s nesting

115

<Programming’20> Companion, March 23–26, 2020, Porto, Portugal Beckmann, Ramson, Rein, Hirschfeld

(a) The default configuration discussed in this paper. Colors in-
crease in brightness as the nesting gets deeper.

(b) Colors are assigned per unique identifier. Nodes have alternating
background colors.

(c) Alternating colors with vertical insets for each node removed.

Figure 3: Three configuration options for our editor. Figure
3a is the default and primarily described configuration.

gets hard to recognize, but space usage is now roughly equivalent
to that of the text layout in figure 2.

3.2 Color
We use colors to support the hierarchy. A method base color is
chosen per class, such that methods of the same class will have the
same base color. As the nesting increases, we decrease saturation
and increase brightness of the base color. This will quickly clamp at
white if the nesting gets too deep, which in general is problematic,
but as a side effect may encourage users to write less complex code.
The foreground color adapts to different backgrounds to ensure
legibility.

Figure 4: All types of markers currently implemented in
our editor: a black outline showing the user’s cursor; a red
marker for an error that occurred during example execu-
tion; a yellow outline for the jump mark “a”; white high-
lights for usages of the currently selected identifier.

Each Smalltalk block starts a new base color to help the user
quickly discern control flow. We calculate this color by rotating the
base color’s hue value around the hue wheel to arrive at a distinct,
but related color. We also adjust the color’s brightness up or down,
depending on whether the color is already rather bright or dark.
This results in a loosely alternating color scheme as blocks nest
deeper, without creating jarring differences.

We explored various alternatives, one can be seen in figure 3b.
Renditions that do not use color to support the structure allow using
color for other purposes, such as syntax or identifiers, as seen in
figure 3b. This evokes a stronger resemblance to textual code editors,
but the distinction of nesting and blocks gets harder. Alternating
colors solve the issue of colors getting too bright, however, the
intuition of bright colors meaning deep nesting gets lost.

3.3 Language Specific Support
Textual Smalltalk syntax elements appear in different places, for
example the caret in front of a return expression. These elements
are, however, not editable and act as icons or signifiers. They are
kept in a lighter text color to show their symbolic nature. Text that
is full white or black is editable and is exclusively used for named
identifiers or literal values, such as numbers. All structuring syntax
elements have been removed from the AST and replaced with ex-
plicit node nesting. As such, parentheses are no longer necessary,
as users see the evaluation order through the AST structure instead.
This was an important step during interaction design, as we found
that including textual syntax elements led to false assumptions on
the editor’s abilities to deal with incomplete syntax. For example, a
user may assume that deleting the statement separator would be
the fastest way to join two statements during a refactor, while the
editor will generally not be able to join two expressions without
first knowing the message call in which the two expressions should
reappear. As such, we would need to ask the user to explicitly dis-
ambiguate their intent, in this case by requiring input of a message
selector or a similar structure that can contain two expressions, or
support incomplete tree transformations.

The editor augments the AST with different markers and borders
as seen in figure 4. When users move to select an identifier, we

116

Visual Design for a Tree-Oriented Projectional Editor <Programming’20> Companion, March 23–26, 2020, Porto, Portugal

Figure 5: Classes, methods, an embedded example, and a
REPL open on a workspace. Artifacts push each other to get
a non-overlapping layout and can be collapsed to only show
a header.

highlight all occurrences of identifiers that resolve to the same
declaration currently visible in the editor. If the user provides an
executable definition, such as an example or a test case, we run this
code and display errors by adding red highlights. The user’s current
selection is displayed as a strong black or white border, depending
on the surrounding colors. Users can mark jump locations similar
to Vim’s jump registers. Marking a block in this way will place a
border around it and display the character this jump corresponds
to.

For navigating multiple methods, or other artifacts like class
definitions, we adapted a layout similar to Code Bubbles [2], see
figure 5. Artifacts do not overlap, they can be toggled to only a
declaration or header, and a set of currently opened artifacts can
be persisted into a workspace.

We currently have three categories of projections that substi-
tute Smalltalk message sends with specific user interface elements.
Tooling projections, such as watches, breakpoints, or examples are
kept in a dark gray. Any nested expressions will be treated either
as defined within a new Smalltalk block or as part of the current
one. Substituted expressions, for example domain specific queries
or regular expressions, will appear in the regular color scheme.
They may contain arbitrary user interface elements, such as color
pickers or checkboxes. Lastly, comments appear in white, similar to
commented-out code, which uses a white base color, such that all
child nodes also appear in white. As such, disabled code is distinct
from used code, but remains editable and selectable in the same
way as enabled code.

3.4 Explored Alternatives
Before settling on the presented visual design, we explored alterna-
tive options.

A projection in a graph as seen in figure 6 did not lend itself
very well to the Smalltalk language, in general. The main issues
we encountered were a strong focus on imperative statements and
an inversion of the reading flow. Similar to Unreal’s Blueprints,
we also had to introduce an explicit ordering mechanism, here
through a red line that flows from top to bottom. In contrast to
the Blueprints, we only connect top level statements, where an
order cannot otherwise be derived. For all other expressions we

Figure 6: A projection of a Smalltalk method into a graph. A
red line denotes explicit control flow. Further red lines are
started by nodes representing Smalltalk blocks.

rely on the Smalltalk calling conventions of evaluating from inner
expressions to outer expressions, meaning expressions that appear
more to the top and more to the left than its siblings will evaluate
first.

We decided to place the receiver and arguments of a message
send on the left hand side of the node to be consistent with other
graph tools, where inputs appear left and outputs appear right. As a
consequence, a conditional statement will have its branches extend
to the left of the main flow, resulting in left leaning trees, unlike
the structure of most textual languages, where text aligns to the
left and extends to the right. If breaking the convention of placing
inputs to the left would lead to clearer programs is unclear and
would need to be investigated.

In general, we found that with this projection typical Smalltalk
methods will spread very far apart and present a very unfamiliar
and impractical structure that requires the eyes to jump around fre-
quently. Since Smalltalk also has a functional programming subset,
we believe that this projection may still be well suited for Smalltalk
code that embraces data flow more strongly than imperative con-
cepts. It could then serve as an alternative projection, similar to for
example Luna [8], where text and graphs present the same program
side-by-side.

3.5 Interactions
The editor uses mode-based interactions, reusing the letter keys
in the same way Vim does while in the command mode. Some
commands will put the user into input mode, where letter keys
translate to actual characters again. Hitting escape will return to
command mode.

3.5.1 Context-Aware Input. Users can enter input mode on any
block that contains editable text. The editor will then forward all

117

<Programming’20> Companion, March 23–26, 2020, Porto, Portugal Beckmann, Ramson, Rein, Hirschfeld

keyboard events to that element, letting it decide how to handle
the events. For example, a block for a character literal replaces its
one character by any new input, while a string literal will insert
any typed character into its contents.

Entering the character space or a character that is a valid binary
operator in Smalltalk while editing a variable or number will wrap
this block in a message send and let the user continue typing the
message send. We can perform this action without requiring dis-
ambiguation, since these characters are otherwise not valid in the
context of the current block. This allows users to type the number
2, and, while still in input mode, press the plus sign, which then
wraps the number in a binary message send and keeps the new
message’s selector selected. If the user then presses a character
that is invalid for a binary message selector, for example “3”, it is
forwarded to the hole after the operator, resulting in the expression
“2 + 3”, which was typed with the same number of keystrokes as in
a text-based editor. For a language with more language constructs
than Smalltalk, a declarative concept like MPS’ grammar cells may
be desirable [11].

3.5.2 Reusable Command Set. We define a limited number of com-
mands with the hope that they will generalize to all required editing
operations. In practice, users appear to only be issuing few different
high-level commands frequently while editing source code [5]. For
less common operations, it should be possible to use a combination
of lower-level commands to achieve the intended transformation.
Alternatively, some blocks define commands for less frequently
used operations via a command menu, for example turning the
usage of a variable node into a message send to “self”, a typical
refactoring in Smalltalk. This operation would otherwise require
copying the text from the variable, replacing the variable with a
new message send, and pasting the text.

All commands can generally be put into one of three categories.
One set of commands modifies tree structures in general. This
includes swapping siblings, replacing a child with a parent, or per-
forming a tree rotations. Further, common commands for language
semantics exist, such as “extract variable”, or “send message to
expression”. The last set of commands modifies the state of the
user interface, such as folding methods, moving the selection, or
opening other methods.

We currently define 25 unique, essential editing commands and
a total of 90 commands across all modes. We tried to make it easier
for users to memorize the commands by reusing syntax elements
of the Smalltalk language as command keys. For example, “ˆ” will
wrap the selection in a return statement. Additionally, a subset
of commands has a corresponding uppercase version, which will
typically invert the action, so turn an undo into a redo. Where
appropriate, we reused Vim’s mappings, so “hjkl” will move the
selection, “i” and “a” will enter input mode, and “x” and “d” will
delete nodes. Lastly, some commands have different effects with
similar semantics, depending on the block they are invoked on. For
example, the plus sign adds an element to an array, adds another
part to a keyword message send, or adds another message send to a
Smalltalk cascade. These abstract ideas of concepts, such as adding,
that map to the same key, further reduce the number of different
commands a user has to memorize.

4 DISCUSSION
We are developing the editor in a self-supporting manner and used
it in various other Squeak/Smalltalk projects. In our own experi-
ence, the layout is inconvenient for reading large methods, but the
refactoring tools of the editor made reducing method complexity
a lot easier than the built-in Squeak refactoring tooling. Having
auto-layout while writing new methods or editing complex expres-
sions provided a great editing experience, even though the layout
did not always choose the best possible configuration. We itera-
tively improved the layout as we found edge cases that seemed not
satisfactory. For us, the goal of communicating the tree structure
sufficiently clear to allow finding the right editing commands, was
achieved. After some initial training, we were able to use the editor
efficiently and did not encounter effects of commands that surprised
us.

In practice, we found that colors getting too bright was rarely
an issue. Typically, it did indeed indicate an expression that could
be simplified or was already simple enough to easily be understood
even without the aid of the color scheme, such as a mathematical
expression involving mostly binary operators. Since we compute
unique colors per class, we have run into cases where a method’s
base color was not very suitable for our approach of increasing
the brightness. In general, however, we found the colorscheme
with increasing brightness values to work best, in particular as
it conveyed both an intuition of nesting depth and control flow
elements at a glance. We explored restarting with the base color
when the changes in color become indistinguishable, but we found
that this led to confusion with our visualization of Smalltalk blocks:
a bright color starting would no longer be an indicator of a new
block, but could instead be an expression with deep nesting.

Table 1: The mean, maximum, and summed space us-
age of 8162 methods in the Morphic package (in a
Squeak/Smalltalk 5.3 image), using our custom layout and
the methods’ text layout in square pixels.

Mean Max Sum
Text Layout 64,777 979,200 523,728,000
Our Layout 101,915 4,144,608 831,837,993

As apparent from figure 3c, a layout that takes just as much
space as a text layout does not visualize the AST structure very
well. Working with this condensed layout caused uncertainty about
the exact nesting of expressions, as parentheses were omitted. To
get a sense of the impact of the extra spacing, we calculated the
mean, max, and sum of all methods’ area in the Morphic package
in square pixels with both our layout and a pretty-printed layout
text with comments stripped in both layouts, see table 1. Mean
space usage turned out to be around 1.6 times higher in our layout
compared to text layout. Maximum space usage, however, was
around 4.2 times higher.

In limited tests, code appeared readable even to people not famil-
iar with the editor, but familiar with Smalltalk. Removal of syntax
elements did not appear to be an issue, but our current usage of
signifiers caused confusion at first, as we only display the opening
elements of nesting groups, for example of Smalltalk blocks. The

118

Visual Design for a Tree-Oriented Projectional Editor <Programming’20> Companion, March 23–26, 2020, Porto, Portugal

color choices were generally perceived as pleasant and helpful, in
particular when compared to the alternating color scheme in figure
3b.

5 FUTUREWORK
The most important next step is a formal evaluation within a study.
For this, both the stability and explorability of the editor needs
improvement. Its current design is not well suited for novice users,
as it relies almost exclusively on shortcuts that need to be memo-
rized. An advantage, however, is that it seamlessly integrates into
the existing Smalltalk environment. As such, testing if a group of
users will use the editor throughout their workday or rather keep
switching back to their known tooling may provide first insights.

An area of improvement for layout could be the definition of a
common baseline for long message sends that split vertically. Cur-
rently, the message part, that is the “ifTrue:” of an “ifTrue:ifFalse:”
message, will center vertically with respects to its argument, rather
than appear aligned to the first statement of the argument. In partic-
ular for argument blocks with a large height, this will distribute the
message parts over a large distance. Aligning to the text baseline
of the first statement may look more intuitive and keep message
parts closer together.

Further, a more well distributed, well balanced computation of
base colors could be investigated. At the moment, some computed
base colors may not work well in that they turn white after just
two adjustments of their brightness. This could be improved by
constraining colors to a certain part of the Hue-Saturation-Value
cone. The chosen base colors also appear to not currently exhaust
the full range of possible colors, our current method of using the
class object’s identity hash as a base for computation may thus not
lead to a well distributed color spectrum.

More approaches of condensing the representation’s space usage
could be considered. We investigated reverting parts of the program
further away from the cursor back to their textual representation
and only expanding again when the user navigated to that part of
the program. The transition, however, appeared jarring and requires
the user to work with two different representations at the same
time. Experimenting with an animated transition between block
and text display could lessen the impact of this issue. Having well
developed interactions for zooming within the editor may also
help for navigation, even though this may only be considered a
workaround.

6 CONCLUSION
We presented our approach to the visual design of a projectional
editor that clearly displays the AST’s structure. Through this, we

hope to allow users to efficiently and confidently navigate and
edit the program on an AST-node level, rather than falling back to
parsing text expressions back into the AST.

Achieving this clear representation comes at the expense of
screen space: our layout will on average take 1.6 times as much
space as an equivalent textual representations. We further support
the representation by using colors to provide an intuition of nesting
depth and control flow elements.

ACKNOWLEDGEMENTS
We gratefully acknowledge the financial support of HPI’s Research
School2 and the Hasso Plattner Design Thinking Research Pro-
gram3.

REFERENCES
[1] Thorsten Berger, Markus Völter, Hans Jensen, Taweesap Dangprasert, and Janet

Siegmund. 2016. Efficiency of projectional editing: a controlled experiment.
763–774. https://doi.org/10.1145/2950290.2950315

[2] Andrew Bragdon, Robert Zeleznik, Steven Reiss, Suman Karumuri, William
Cheung, Joshua Kaplan, Christopher Coleman, Ferdi Adeputra, and Joseph Jr.
2010. Code bubbles: A working set-based interface for code understanding and
maintenance, Vol. 4. 2503–2512. https://doi.org/10.1145/1753326.1753706

[3] M. Erwig and B. Meyer. 1995. Heterogeneous visual languages-integrating visual
and textual programming. In Proceedings of Symposium on Visual Languages.
318–325. https://doi.org/10.1109/VL.1995.520825

[4] Adele Goldberg and David Robson. 1983. Smalltalk-80: The Language and Its
Implementation. Addison-Wesley Longman Publishing Co., Inc., USA.

[5] Amy Ko, Htet Aung, and Brad Myers. 2005. Design requirements for more
flexible structured editors from a study of programmers’ text editing. 1557–1560.
https://doi.org/10.1145/1056808.1056965

[6] David Lane, H. Napier, S. Peres, and Aniko Sandor. 2005. Hidden Costs of
Graphical User Interfaces: Failure to Make the Transition from Menus and Icon
Toolbars to Keyboard Shortcuts. Int. J. Hum. Comput. Interaction 18 (05 2005),
133–144. https://doi.org/10.1207/s15327590ijhc1802_1

[7] Eyal Lotem and Yair Chuchem. 2016. Lamdu. https://web.archive.org/web/
20191002233046/http://www.lamdu.org/

[8] Piotr Moczurad and Maciej Malawski. 2018. Visual-Textual Framework for
Serverless Computation: A Luna Language Approach. 169–174. https://doi.org/
10.1109/UCC-Companion.2018.00052

[9] Mitchel Resnick, JohnMaloney, Andrés Monroy-Hernández, Natalie Rusk, Evelyn
Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver, Brian
Silverman, and et al. 2009. Scratch: Programming for All. Commun. ACM 52, 11
(Nov. 2009), 60–67. https://doi.org/10.1145/1592761.1592779

[10] Tamás Szabó, Markus Voelter, Bernd Kolb, Daniel Ratiu, and Bernhard Schaetz.
2014. Mbeddr: Extensible Languages for Embedded Software Development. Ada
Lett. 34, 3 (Oct. 2014), 13–16. https://doi.org/10.1145/2692956.2663186

[11] Markus Voelter, Tamás Szabó, Sascha Lisson, Bernd Kolb, Sebastian Erdweg, and
Thorsten Berger. 2016. Efficient Development of Consistent Projectional Editors
Using Grammar Cells. In Proceedings of the 2016 ACM SIGPLAN International
Conference on Software Language Engineering (Amsterdam, Netherlands) (SLE
2016). Association for Computing Machinery, New York, NY, USA, 28–40. https:
//doi.org/10.1145/2997364.2997365

[12] Markus Völter, Janet Siegmund, Thorsten Berger, and Bernd Kolb. 2014. Towards
User-Friendly Projectional Editors. 41–61. https://doi.org/10.1007/978-3-319-
11245-9_3

2https://hpi.de/en/research/research-school.html
3https://hpi.de/en/dtrp/

119

https://doi.org/10.1145/2950290.2950315
https://doi.org/10.1145/1753326.1753706
https://doi.org/10.1109/VL.1995.520825
https://doi.org/10.1145/1056808.1056965
https://doi.org/10.1207/s15327590ijhc1802_1
https://web.archive.org/web/20191002233046/http://www.lamdu.org/
https://web.archive.org/web/20191002233046/http://www.lamdu.org/
https://doi.org/10.1109/UCC-Companion.2018.00052
https://doi.org/10.1109/UCC-Companion.2018.00052
https://doi.org/10.1145/1592761.1592779
https://doi.org/10.1145/2692956.2663186
https://doi.org/10.1145/2997364.2997365
https://doi.org/10.1145/2997364.2997365
https://doi.org/10.1007/978-3-319-11245-9_3
https://doi.org/10.1007/978-3-319-11245-9_3

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Visual Design of Projectional Editors
	2.2 A Projection for Smalltalk

	3 Approach
	3.1 Editor Structure
	3.2 Color
	3.3 Language Specific Support
	3.4 Explored Alternatives
	3.5 Interactions

	4 Discussion
	5 Future Work
	6 Conclusion
	References

